Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An eye on the tongue

03.06.2004


Sitting blindfolded with a device equipped with 144 pixels in his mouth, any journalist would wonder about his career choice. But after a few minutes of experimentation, you have to recognize that the system developed by neuropsychologist Maurice Ptito of Université de Montréal, together with colleagues in Denmark and the United States , to allow blind people to “see with their tongue” appears strangely effective. In just the first few minutes, the subject is able to build up a fairly clear picture of the letter “T” placed in various positions and transmitted by electrical impulses to the device on his tongue.



The Tongue Display Unit (TDU) can activate areas that are normally reserved for visual information and are unused when someone suffers from congenital blindness. “The tongue will never replace the eye, of course,” says Prof. Ptito. “But for people born blind, the cerebral cortex, which is normally used for vision, is reactivated by this device. The electrical activity, recorded by a scan, is very clear about this.” When we press the researcher to find out more about possible applications of this system, he delights in describing a miniaturized system worthy of the Bionic Man. “We can imagine a camera installed in the eye, which transmits an image from a device worn on the belt. This would send an electrical stimulus to the lingual stimulator mounted on a trip indicator the user wears under the palate. To have access to the camera’s images, all he would have to do is press his tongue against it.”

In the shorter term, we can imagine a system that would replace the Braille alphabet. In fact, if the tongue were capable of “reading” the letters of the alphabet, it would be able to read texts broadcast via electrical signals. When it has been perfected, this system could considerably improve the quality of life of blind persons. It would be a “hands-off” non-invasive system.


It is no surprise that the tongue is the focus of Maurice Ptito’s work. Processing of information from this organ occupies a large part of the brain, and the presence of saliva creates excellent conditions for the transmission of electrical stimuli. “Our research shows that our senses are recyclable, in a way,” explains neuropsychologist Maurice Ptito of the School of Optometry , who collaborated with a researcher from the University of Aarhus, Denmark, Ron Kupers.

Started in Scandinavia , this research is now being pursued in Canada by a Master’s student, Solvej Moesgaard. Professor Ptito was able to obtain the equipment he needed to advance the project thanks to various sources of funding. Research on the congenitally blind has already begun, and the School of Optometry is taking advantage of the proximity of the Nazareth and Louis Braille Institute in the same building to recruit research subjects.



Researcher: Maurice Ptito
Email: maurice.ptito@umontreal.ca
Telephone: (514) 343-6052 (514) 808-6161
Funding: Danish Medical Research Unit, Fonds de recherche en Santé du Québec

Sophie Langlois | University of Montreal
Further information:
http://www.iforum.umontreal.ca/ForumExpress/Archives/vol3no3en/article02_ang.html

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>