Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLU scientists have identified the first gene regulating programmed cell death in plant embryos

02.06.2004


A research team at the Swedish University of Agricultural Sciences, SLU, has succeeded in isolating a novel gene that regulates cell death in plant embryos. This is a world first.



The team consists of scientists from the Department of Plant Biology and Forest Genetics, headed by Peter Bozhkov and Sara von Arnold. The team has discovered programmed cell death in plant embryos and has recently identified the first gene that regulates this cell death. This research has been conducted in collaboration with Durham University, England, and the Karolinska Institute, Stockholm.

"This is a tiny, tiny step that we have taken in basic research on plant development. In the long term this may be of significance in plant breeding and in forestry," says Sara von Arnold, professor of forest tree cell biology at SLU.


The scientists hope the new knowledge about how programmed cell death is regulated can be exploited to increase production and bolster resistance in plants.

Programmed cell death is a natural and vital process during the life cycle of multicellular organisms. Among other purposes, it regulates the form of organisms during certain developmental stages and removes superfluous or damaged cells. It could be said that cell death is a kind of suicide that is regulated by a "death gene." This has been studied extensively in animal cells.

The 2002 Nobel laureates in medicine and physiology identified key genes that regulate the development of organs and programmed cell death in worms. These genes are crucial to the functioning of the body. When the balance between production of new cells and cell death is disturbed, diseases like cancer and several neurological disorders arise.

Compared with animal cells, plant cells have developed completely different mechanisms to regulate programmed cell death. With the SLU scientists‚ discovery, recently published in the scientific journal Current Biology, it is now possible to study how these different regulatory mechanisms have evolved in plants and animals.

Authors:

Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B and Bozhkov PV. (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology 14: R339-R340.

Carin Wrange | EurekAlert!
Further information:
http://www.vr.se/

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>