Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists block cellular enzyme activity involved in cancer progression

02.06.2004


Scientists at the University of North Carolina at Chapel Hill have found an unexpected way to turn off a cellular enzyme involved in the progression of several types of human cancers.



The enzyme, focal adhesion kinase (FAK), is known to promote cellular movement and survival. Its over-activity promotes cancer cell growth and metastasis. The new study demonstrates for the first time that one segment of FAK called the FERM domain plays a crucial role in activating FAK.

Subtle changes to the FERM domain make FAK activity deficient, the study showed. This discovery raises the possibility that drugs designed to mimic this modification could allow doctors to turn off FAK in cancer patients, UNC researchers said.


The new findings appear in the June 2 issue of the journal Molecular and Cellular Biology. The study’s lead author, Dr. Michael D. Schaller, first isolated FAK in 1992 while searching for proteins involved in transforming normal cells into cancer-like cells. Schaller is associate professor of cell and developmental biology in UNC’s School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center.

"Since FAK was discovered in the context of cancer, there was immediate interest in relating FAK activity to its potential role in the development and progression of tumors," Schaller said.

One way cells sense and respond to their environment is through receptor molecules called integrins, which are located on the cell’s outer surface. FAK relays signals from integrins to other molecules inside the cell that ultimately control the growth, survival and movement of the cell. Because unrestrained growth, survival and motility are hallmarks of tumor cells, the basic biological functions of FAK have implied its involvement in cancer.

Studies continue to connect unregulated FAK activity with malignant cancer, said Schaller. However, no drugs have been developed that are able to specifically inhibit FAK activity.

"If we can figure out the minute details as to how FAK works, then we can determine how to block its activity," Schaller said. "And if we do that, then we might be able to apply what we learn therapeutically against cancer."

To better understand FAK activity, Schaller collaborated with the Structural Bioinformatics Core Facility at UNC to predict the three-dimensional configuration of FAK’s FERM domain.

Computer modeling of the FERM domain predicted a small patch of positively charged amino acids on its surface. These amino acids are conserved in the FAK molecules of organisms as diverse as insects and humans.

Schaller and his colleagues then engineered a mutant FAK molecule devoid of positive charges on that small patch of FERM and found that their mutant protein was nonfunctional. Whereas breast cancer cells responded to increased expression of normal FAK by migrating faster, the mutant FAK was unable to provoke any change in movement from breast cancer cells.

"Our mutant appears to be deficient for turning FAK on and making cells move," Schaller said.

The positively charged region identified in this study seems to cooperate directly with other domains of the molecule, he added.

"Disruption of this interaction might reduce activation of FAK and impair aberrant cell motility or survival conferred by FAK under pathological conditions, such as cancer."


The study was supported by grants from the National Institutes of Health and the U.S. Department of Defense.

By STUART SHUMWAY
UNC School of Medicine

Note: Contact Schaller at (919) 966-0391 or crispy4@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>