Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Noisy’ genes can have big impact

28.05.2004


Experiments by Howard Hughes Medical Institute (HHMI) researchers have revealed it might be possible for randomness in gene expression to lead to differences in cells — or people, for that matter — that are genetically identical.



The researchers, HHMI investigator Erin K. O’Shea and colleague Jonathan M. Raser, both at the University of California, San Francisco, published their findings May 27, 2004, in Science Express, the online edition of the journal Science.

According to O’Shea, the original notion that random noise in gene expression — the processes by which proteins are synthesized from the information contained in DNA — arose from a paradox. “While processes such as gene expression involved in the development of organisms proceed in a very orderly fashion, paradoxically, they depend on chemical reactions that are inherently probabilistic, like flipping a coin,” said O’Shea. “And since these processes involve small numbers of molecules, they should be significantly affected by chance, just as flipping a coin a few times will be more heavily affected than flipping it many times.”


Earlier experiments by Michael Elowitz, who is now at the California Institute of Technology, and his colleagues at The Rockefeller University demonstrated that this type of random noise existed in the common bacterium E. coli. In later experiments, Raser and O’Shea set out to explore the mechanism underlying random noise in gene expression in a higher organism — choosing the most primitive animal, yeast.

Raser and O’Shea used an indicator technique developed by Elowitz to detect noise in gene expression. They engineered yeast cells to produce blue and yellow fluorescent indicator proteins under the control of the same “promoter” — the segment of the gene regulating its expression. In this scheme, if there were no noise, every cell would appear the same mix of blue and yellow color under the microscope.

However, if any noise crept in, it would produce a variation in colors among the cells. This color variation could then be measured to determine the amount of noise that was present. This method eliminated any influence of external environmental factors or variables such as differences in cell type, since the two genes were operating inside the same cell.

After using this technique to study the function of various promoters, the scientists concluded that noise did, indeed, affect gene expression in the yeast cells. They also found that different promoters produced different amounts of noise.

Based on their studies, Raser and O’Shea believe they have identified the source of a major portion of the random noise they observed. “Our experiments suggest that for the promoters we studied, a major source of noise is the act of preparing the promoter DNA, the regulatory region, to be competent for transcription,” said O’Shea. This preparation, she said, involves “remodeling” the protective structure, called the nucleosome, which enfolds the regulatory region of the gene so that the transcription machinery can access it. “And the step that is generating noise is this act of removing the nucleosomes, in order to allow access of the transcription machinery and the regulatory proteins,” she said.

Remodeling is particularly slow, O’Shea said, and subject to significant probabilistic variation. This variation would likely have an affect on the amount of mRNA produced for each marker-tagged gene and thus the level of a given protein in the cell — affecting its color.

According to O’Shea, randomness in gene express could have important evolutionary and biological implications, both advantageous for cells and deleterious. For example, mutations in genes could change their “noisiness” independent of the effect of the mutation itself. Noise in essential genes could be deleterious for a cell. However, noise could also produce diversity in populations of cells with the same genetic makeup, and this diversity could make them more adaptable to changes.

Another effect of randomness in gene expression might be observed, for example, in cells with two slightly different copies of the same gene, where one might be noisier than the other. Such noise might also produce variability among cells that might offer evolutionary advantages.

Noise in genes might also be a trigger for the formation of tumors, said O’Shea. In cases where cells lose one copy of a gene through mutation, the reduction in gene number increases the noise in gene expression. This increase in noise makes it more likely that the remaining gene might alter its activity to trigger uncontrolled proliferation.

Noise could be necessary for normal development of some biological systems, said O’Shea. For example, when olfactory neurons in the developing embryo are “deciding” which of a multitude of possible odorant receptors they will produce — a choice that is final — random noise in gene expression might be necessary to enable this decision, she said.

O’Shea said that her group plans to continue this line of research and hopes to identify in which cases such randomness is beneficial to an organism. Then, they will alter the level of noise and determine how it affects the fitness of the organism. They also want to follow noise production in a single cell over time — rather than in populations of cells — to explore in more detail how noise is produced.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/oshea.html

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>