Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small, Cold, and Hungry: Ultra-Small Microbes from a 120,000-Year-Old Greenland-Glacier Ice Sample

27.05.2004


Material from a 120,000-year-old Greenland Glacier ice sample showing micro-microbes (small white oblong forms) and larger materials.


One of the novel micro-microbes isolated from a 120,000-year-old Greenland Glacier ice sample


The discovery of millions of micro-microbes surviving in a 120,000-year-old ice sample taken from 3,000 meters below the surface of the Greenland glacier will be announced by Penn State University scientists on 26 May 2004 at the General Meeting of the American Society for Microbiology in New Orleans, Louisiana. The discovery is significant because it may help to define the limits for life on Earth as well as elsewhere in the universe, such as on cold planets like Mars.

According to Penn State researchers Vanya I. Miteva, research associate, and Jean E. Brenchley, professor of microbiology and biotechnology, the majority of the microbes they discovered in an ice-core sample taken from the glacier were less than 1 micron in size--smaller than most commonly known bacteria, which range from 1 to 10 microns. In addition, a large portion of the cells appeared to be even smaller and passed through filters with 0.2-micron pores. The scientists are interested in understanding how microbial life can be preserved in polar ice sheets for hundreds of thousands of years under stresses that include subzero temperatures, desiccation, high pressures, and low oxygen and nutrient concentrations. Because the ice was mixed with the ancient permafrost at the bottom of the glacier, the microbes could have been trapped there for perhaps millions of years.

"We are particularly interested in the formation of ultra-small cells as one possible stress-survival mechanism, whether they are starved minute forms of known normal-sized microbes or intrinsically dwarf novel organisms, and also whether these cells are able to carry on metabolic processes while they are so highly stressed," Miteva says. Physiological changes that accompany the reduction of a cell’s size may allow it to become dormant or to maintain extremely low activity with minimal energy.



"Many of these ice-core microbes are related to a variety of ultra-small microorganisms from other cold environments that have been shown to use different carbon and energy sources and to be resistant to drying, starvation, radiation, and other stress factors. Their modern relatives include the model ultra-micro bacterium Sphingopyxis alaskensis, which is abundant in cold Alaskan waters," Brenchley reports. She and Miteva are in the process of closely examining all the microbes they found in order to determine the identities and diversity of the species and to look for ones with novel functions.

The researchers used a variety of methods including repeated sample filtrations, electron microscopy, and a modified technique of flow cytometry to quickly reveal the number of cells and to estimate their different sizes, DNA content, and other characteristics. Miteva and Brenchley discovered cells with many different shapes and sizes, including a large percentage that were even smaller than filter-pore sizes of only 0.2 microns. "It appears that these ultra-small microbes often are missed in research studies because they pass through the finest filters commonly used to collect cells for analysis," Miteva says.

"Scientists believe these dwarf cells belong to the ’uncultured majority’ because they are among the 99 percent of all microbes on Earth that have never been isolated and cultured for study. Obtaining such ’isolates’ is necessary in order to describe a new organism, study its cell size, examine its physiology, and assess its ecological role. We now know just the tip of the iceberg of all the microbes that exist on Earth, and it generally is believed that a large portion of these unknown microbes are very small in size," Miteva says.

"A major challenge is to develop novel approaches for growing some of these previously unculturable organisms," Brenchley says. "At present, no single established protocol exists and little is known about the recovery of these stressed and possibly damaged cells from a frozen environment that subjects them to severe conditions for long periods." Some of the cells that Miteva and Brenchley were successful in cultivating required special conditions and up to six months to form initial colonies. The researchers discovered that these colonies grew more rapidly during further cultivation and that most continued to form predominantly small cells.

"Our study of the abundance, viability, and identity of the ultra-small cells existing in the Greenland ice is relevant to discovering how small life-forms can be; how cells survive being small, cold, and hungry; and what new tricks we need to develop in order to cultivate these small cells," Miteva says. "This study is part of the continuing quest by microbiologists to overcome the current limitations of our methods and to answer the big question, ’What new microbes are out there and what are they doing?’"


This research was supported by the Department of Energy (Grant DE-FG02-93ER20117) and the Penn State Astrobiology Center (NASA-Ames Cooperative Agreement No. NCC2-1057).

CONTACTS before 22 May and after 27 May:
Vanya I. Miteva: (+1)814-865-3330 (lab phone and fax), vim1@psu.edu
Jean E. Brenchley: (+1)814-865-3330 (lab phone and fax), jeb7@psu.edu
Barbara Kennedy (PIO): (+1)814-863-4682, science@psu.edu

CONTACTS from 22 May to 27 May:
Press Room at American Society for Microbiology meeting: 504-670-4240
Barbara Kennedy (PIO): (+1)814-863-4682, science@psu.edu

Barbara Kennedy | Penn State
Further information:
http://www.science.psu.edu/alert/Brenchley5-2004.htm

More articles from Life Sciences:

nachricht Brain cells protect muscles from wasting away
24.02.2020 | University of California - Berkeley

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>