Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VA/UCLA researchers pinpoint role of histamines in waking

27.05.2004


A study by scientists with the Veterans Affairs’ Neurobiology Research Laboratory and UCLA Neuropsychiatric Institute shows that brain cells containing the chemical histamine are critical for waking.



Detailed in the May 27 edition of the journal Neuron, the findings show that the cessation of activity in histamine cells causes loss of consciousness during sleep, while cessation of activity in other brain cells--those containing the brain chemicals norepinephrine or serotonin--causes loss of muscle tone in sleep. The findings also help explain why antihistamines, often taken to control allergies, cause drowsiness.

"Our findings greatly improve our understanding of the brain activity responsible for maintaining consciousness and muscle tone while awake," said Dr. Jerome Siegel, senior author on the study. "The findings should aid in the development of drugs to induce sleep and to increase alertness." Siegel is chief of neurobiology research at the VA Greater Los Angeles Healthcare System, Sepulveda, and a professor at the UCLA Neuropsychiatric Institute.


The research team conducted their study using dogs with the sleep disorder narcolepsy, in which sudden collapses of muscle tone, known as cataplexy, occur during waking. Although waking alertness is maintained during cataplexy, muscle tone is lost.

In both narcoleptic and normal animals, cells containing histamine, norepinephrine and serotonin are active in waking and inactive in sleep. The researchers studied their activity in cataplexy to pinpoint the roles of the three cell groups in the loss of consciousness and loss of muscle tone that occur during sleep.

The VA/UCLA researchers found that histamine cell activity continued during cataplexy, indicating that their activity is linked to waking. The team also found that norepinephrine and serotonin cell activity ceases in cataplexy, showing that their activity is related to muscle tone, rather than waking.

In 2000, Siegel’s team published its findings that narcoleptics had 95 percent fewer hypocretin (orexin) nerve cells in their brains than those without the illness. The study was the first to show a possible biological cause of narcolepsy.


The VA Greater Los Angeles Health Care System’s Neurobiology Research Laboratory is a part of the Sleep Research Group. This multidisciplinary group of investigators is pursuing innovative ways to prevent and treat sleep disorders. Current studies focus on body-temperature regulation during sleep; brain mechanisms regulating sleep and circadian rhythms; narcolepsy and its causes; and the role of sleep in epileptic events.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. More information about the Institute is available online at www.npi.ucla.edu.

Dan Page | EurekAlert!
Further information:
http://www.npi.ucla.edu.

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>