Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected similarities between raindrops and proteins

27.05.2004


Raindrops and proteins seem to have a lot in common. This has been shown in a new study by scientists at Umeå University in Sweden. The principle behind the formation of raindrops is very similar to how proteins fold. This knowledge is vital to our understanding of neurodegenerative diseases like ALS.



These findings have been published in the latest issue of the journal Proceedings of the National Academy of Sciences and have caught the attention of the international research community. The study was carried out by the biochemists Mikael Oliveberg and Linda Hedberg at Umeå University.

To form a raindrop, it is not enough for a few water molecules to stick together. About 100 water molecules have to conglomerate at the same time. If there are fewer, the drop cannot begin to grow, but it falls to pieces immediately.


Using newly developed theory, Linda Hedberg and Mikael Oliveberg have shown that the inscrutable building blocks of the body, proteins, adopt their proper shape in a similar manner. Unlike water, proteins are made up of long chains, and these chains have to instantly fold to a globular form to keep the normal function of the cell. But just like raindrops, it is not enough if just a few segments of the protein chains start tangling together. All parts have to come together at once, otherwise nothing happens. The scientists see a key principle in this.

“Now that we see the similarities between the genesis of raindrops and the folding of proteins we can also analyze protein folding in a clearer light. We have a stringent theory to follow,” says Mikael Oliveberg.

The complicated way in which proteins fold offers the advantage that no half-developed proteins are formed. If such half-developed proteins nevertheless accumulate, they tend to stick to each other, which in turn can lead the cell to “commit suicide”. Such improper folding in the sensitive nerve cells lies behind severe disorders like ALS, mad-cow disease, and Alzheimer’s disease. At present these diseases are incurable because the knowledge of the misfolding process is yet fragmental.

With the aid of the new theory, these scientists are now working to map what parts of the proteins control the folding and what parts are vulnerable to noxious misfolding. The findings could represent an important step toward a more detailed molecular understanding of how proteins behave in our cells and what happens when things go wrong. As so often in the past, parts of the puzzle turn up when they are least expected: in this case the principle behind the formation of raindrops may be the key to understanding neurodegenerative diseases.

“The connection between raindrops and proteins may seem simple, but simple solutions are often the right ones. It also shows how everything fits together in nature. Phenomena recur, but with different faces. If we can understand protein folding with help of this theory, we will also be gaining a greater knowledge of life and why things sometimes go wrong,” says Mikael Oliveberg.

Karin Wikman | alfa
Further information:
http://www.info.umu.se/Press/PressRelease.aspx?id=1480

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>