Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual frustration: programmed cell death prevents plant inbreeding

21.05.2004


Scientists have demonstrated the importance of programmed cell death in preventing inbreeding in plants, according to research published in Nature today. Researchers at the University of Birmingham School of Biosciences have found that self-incompatibility, an important mechanism in plants that prevents them fertilizing themselves with their own pollen, which is genetically controlled by products of the S locus, triggers programmed cell death in incompatible pollen coming into contact with the stigma.



The work, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), was carried out on the field poppy, Papaver rhoeas and has shown the involvement of programmed cell death (PCD) in plant self-incompatibility for the first time. PCD is a mechanism used by many organisms to destroy unwanted cells in a precise and regulated manner and in various forms it plays a crucial role determining development in many things from embryos to tumours.

The researchers, using methods common in the study of animal cells but not widely used with plant cells, found that S proteins encoded by the stigma component of the S locus interacted with incompatible pollen to inhibit pollen tube growth and to trigger PCD. It has been known that plants use PCD to fight disease but it had not been proven that it was involved in self-incompatibility.


“Many researchers have been studying self-incompatibility in order to try to establish the mechanisms that plants use for this type of selective ‘contraception’ against unwanted ‘self’ or genetically identical pollen,’ says Dr Noni Franklin-Tong, who led the research group. ‘Our study, which provides the first demonstration of a self-incompatibility system using Programmed Cell Death, is a significant advance in our understanding of how plants inhibit ‘self’ pollen. By recognizing ‘self’ pollen and then causing it to commit ‘suicide’, this SI mechanism we have discovered in poppy provides a highly novel way to prevent self-fertilization.”

Most notably, the research provides evidence that a “caspase-like” activity is involved. Although caspases are known to be key enzymes involved in programmed cell death in animal cells this is a contentious finding because no caspase sequence has been identified in the Arabidopsis genome. Although it does not prove there is a caspase in plants, it does suggest a gene encoding a protein with a similar activity exists in plants.

Andrew McLaughlin | alfa
Further information:
http://www.bbsrc.ac.uk/media

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>