Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual frustration: programmed cell death prevents plant inbreeding

21.05.2004


Scientists have demonstrated the importance of programmed cell death in preventing inbreeding in plants, according to research published in Nature today. Researchers at the University of Birmingham School of Biosciences have found that self-incompatibility, an important mechanism in plants that prevents them fertilizing themselves with their own pollen, which is genetically controlled by products of the S locus, triggers programmed cell death in incompatible pollen coming into contact with the stigma.



The work, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), was carried out on the field poppy, Papaver rhoeas and has shown the involvement of programmed cell death (PCD) in plant self-incompatibility for the first time. PCD is a mechanism used by many organisms to destroy unwanted cells in a precise and regulated manner and in various forms it plays a crucial role determining development in many things from embryos to tumours.

The researchers, using methods common in the study of animal cells but not widely used with plant cells, found that S proteins encoded by the stigma component of the S locus interacted with incompatible pollen to inhibit pollen tube growth and to trigger PCD. It has been known that plants use PCD to fight disease but it had not been proven that it was involved in self-incompatibility.


“Many researchers have been studying self-incompatibility in order to try to establish the mechanisms that plants use for this type of selective ‘contraception’ against unwanted ‘self’ or genetically identical pollen,’ says Dr Noni Franklin-Tong, who led the research group. ‘Our study, which provides the first demonstration of a self-incompatibility system using Programmed Cell Death, is a significant advance in our understanding of how plants inhibit ‘self’ pollen. By recognizing ‘self’ pollen and then causing it to commit ‘suicide’, this SI mechanism we have discovered in poppy provides a highly novel way to prevent self-fertilization.”

Most notably, the research provides evidence that a “caspase-like” activity is involved. Although caspases are known to be key enzymes involved in programmed cell death in animal cells this is a contentious finding because no caspase sequence has been identified in the Arabidopsis genome. Although it does not prove there is a caspase in plants, it does suggest a gene encoding a protein with a similar activity exists in plants.

Andrew McLaughlin | alfa
Further information:
http://www.bbsrc.ac.uk/media

More articles from Life Sciences:

nachricht Study provides insight into how nanoparticles interact with biological systems
22.10.2018 | Northwestern University

nachricht New technique reveals limb control in flies -- and maybe robots
22.10.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>