Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Once a renin cell, always a renin cell

11.05.2004


In an unusual but useful example of cellular flip-flop, a new research study demonstrates that multiple cell types have the ability to temporarily switch into renin-secreting cells when they are needed to stabilize blood pressure. The research, published in the May issue of Developmental Cell, demonstrates that the recruited cells are direct descendants of cells that expressed renin at one time during development.



Renin is a hormone released into the blood by specialized cells in the walls of kidney blood vessels. Renin is released in response to sodium depletion and/or low blood pressure in the blood vessels of the kidneys and it plays a major role in regulating blood pressure generally in the body. Adult mammals can increase circulating renin, when necessary, by increasing the number of renin-synthesizing cells. Dr. R. Ariel Gomez from the University of Virginia and colleagues examined whether the ability of adult cells to synthesize renin was dependent on the cells’ original lineage. The researchers generated mice with a genetic marker that allowed visualization of renin-expressing cells even after the cell had differentiated into a non-renin-secreting cell type. Experimental manipulations known to recruit renin-expressing cells demonstrated that adult cells that were descendants of renin cells retained the capability to make renin when more of the hormone was required to stabilize blood pressure.

The researchers conclude that specific subpopulations of apparently differentiated cells are "held in reserve" to repeatedly respond by de-differentiating and expressing renin in response to stress and then re-differentiating when the crisis has passed. According to Dr. Gomez, "The experiments confirm that recruitment of renin-expressing cells is determined by the developmental history of the cells, which retain the memory to re-express the renin gene under physiological stress. The mice we have generated should be extremely valuable to delete genes specifically in the renin-expressing cell and therefore determine the precise cellular function of those genes independently of systemic influences."



Maria Luisa S. Sequeira Lopez, Ellen S. Pentz, Takayo Nomasa, Oliver Smithies, and R. Ariel Gomez: "Renin Cells Are Precursors for Multiple Cell Types that Switch to the Renin Phenotype When Homeostasis Is Threatened"

Publishing in Developmental Cell, Volume 6, Number 5, May 2004

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Living Components
22.07.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Regulation of root growth from afar: How genes from leaf cells affect root growth
22.07.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>