Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin-Producing Pancreatic Cells Are Replenished by Duplication

06.05.2004


Howard Hughes Medical Institute (HHMI) researchers at Harvard University have discovered that insulin-producing beta cells in the pancreas that are attacked in type 1 diabetes are replenished through duplication of existing cells rather than through differentiation of adult stem cells.



Although the experiments, which were done using mice, do not rule out the possibility that there are adult stem cells in the pancreas, the researchers say that they do suggest strongly that embryonic stem cells or mature beta cells may be the only way to generate beta cells for use in cell replacement therapies to treat diabetes.

The research team, which was led by HHMI investigator Douglas A. Melton at Harvard University, reported its findings in a research article published in the May 6, 2004, issue of the journal Nature. Melton’s co-authors include Yuval Dor, Juliana Brown and Olga I. Martinez, all of Harvard.


In cell culture, embryonic stem (ES) cells retain the properties of undifferentiated embryonic cells. ES cells have the capacity to make all cell types found in an adult organism. One of the most hotly debated questions in biology is whether adult stem cells, which have been isolated from blood, skin, brain and other organs, have the same developmental capacity as ES cells.

Researchers have known for some time that ES cells can give rise to pancreatic beta cells during development. “But the more interesting question for us has been what happens in mature pancreatic tissue to both maintain the pancreas and to regenerate it,” said Melton. “Previous studies have suggested that there are sources of adult stem cells that might give rise to beta cells. However, those studies had largely depended on histological `snapshots’ of tissues.” Those snapshots can only suggest the “geographic” origin of new beta cells and not the identity of the cells from which they arise, Melton noted.

Melton and his colleagues knew that they could finally put such questions to rest if they could tag beta cells in such a way that that they could determine unequivocally whether the new cells were made from existing beta cells or from a different reservoir of stem cells. For these studies, they devised a “genetic lineage tracing” technique that involved engineering a mouse whose beta cells contained a telltale genetic marker that could be switched on by administering the drug tamoxifen to the mice.

The logic behind the technique is relatively straightforward: When the researchers administer tamoxifen to the adult mice, they can easily follow the marker to determine whether it is inherited by subsequent generations of beta cells. If it is inherited, then the cells expressing the marker are the offspring of pre-existing beta cells.

When the researchers applied their technique to the mice, they discovered that all the new beta cells they examined — whether arising in the usual process of renewal or during regeneration following partial removal of the pancreas - were generated from pre-existing beta cells. According to Melton, the finding highlights a largely unappreciated capability of beta cells.

“No one has really paid much attention to the replicative capacity of the beta cell,” he said. “And this work shows the cells to have a significant proliferative capacity that could be clinically useful.”

According to Melton, the findings might have implications for developing treatments for type 1 diabetes, a disease that destroys beta cells. “If such people have residual beta cells, these findings suggest that a useful clinical direction would be to find a way to boost the proliferative capacity of those beta cells, to restore insulin production in such patients.

“On the other hand, if type 1 diabetics don’t have any beta cells left, then these findings suggest that the only source of new beta cells is probably going to be embryonic stem cells, because there don’t appear to be adult stem cells involved in regeneration.”

Melton emphasized that although the results by his group cannot rule out the existence of beta-cell-producing adult stem cells, “they raise the bar on trying to demonstrate their existence. In these experiments, we find no evidence for the existence of adult pancreatic stem cells,” he said.

The genetic lineage tracing technique devised by Melton’s group is a tool that can now be used to trace the origin of cells involved in the maintenance and repair of other types of tissue. Melton and his colleagues are already using the technique to determine the origin of new cells in lung tissue. And it should be possible to apply the technique to understand the origin of cancer cells in tumors or to understand the role of stem cells in such malignancies, Melton said.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/melton5.html

More articles from Life Sciences:

nachricht How to construct a protein factory
19.09.2019 | Universität Bern

nachricht Quality Control in Cells
19.09.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>