Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings redefine mechanism of action of RNA helicase enzymes

06.05.2004


If DNA can be compared to an architect who gets all the glory for designing the building, RNA can be compared to the engineer who often goes unrecognized, but is needed to turn the blueprints into a real three-dimensional, functional and safe structure. RNA has numerous functions in a cell, including translating the genetic blueprints found in DNA and catalyzing reactions in the cell to build proteins.



In order to carry out its functions, strands of RNA molecules will bind with other RNA molecules, making double-stranded RNA, or will bind with proteins, making RNA-protein complexes, or RNPs.

Wherever RNA occurs in the cell, ubiquitous RNA helicase enzymes are responsible for rearrangements of such complexes. RNA helicases are proteins that burn the universal cellular fuel molecule ATP and use the energy gained from this reaction to unwind double-stranded RNA. It has long been assumed that these enzymes, essential for all aspects of RNA metabolism, exclusively unwind double-stranded RNA.


In a new paper published in the April 30 issue of the journal Science, a group of researchers from the Case Western Reserve University School of Medicine provide fundamental new insight into the function of RNA helicases (also called DExH/D-RNA helicases). The paper is titled "Protein Displacement by DExH/D ’RNA Helicases’ Without Duplex Unwinding."

"We provide direct evidence that these enzymes can utilize energy gained from burning ATP to change shape and composition of RNA-protein complexes without unwinding RNA duplexes," said senior author Eckhard Jankowsky, Ph.D., assistant professor of biochemistry at Case.

"We show that two different RNA helicases can displace proteins from single-stranded RNA and that duplexes do not necessarily need to be disrupted by the enzymes during their myriad biological functions. The findings essentially redefine the mechanism of action of RNA helicases and constitute a paradigm shift in assessing roles of these enzymes in virtually all biological processes that involve RNA."

In an accompanying perspective article, Patrick Linder of the Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland, writes, "Their findings provide new insights into the dynamic rearrangements that take place in RNPs [RNA-protein complexes], and the mechanism of RNA duplex unwinding by RNA helicases."


The work was conducted in the Department of Biochemistry and the Center for RNA Molecular Biology by Jankowsky’s group in collaboration with a laboratory group of Timothy Nilsen, Ph.D., director of the RNA Center at Case. The other authors are, from the Department of Biochemistry, Margaret E. Fairman, Wen Wang, and Heath A. Bowers, and, from the RNA Center, Patricia A. Maroney, as well as, from the Department of Biological Sciences, State University of New York at Buffalo, Paul Gollnick.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>