Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Scientists Look Deep Inside Sharks and Their High-Performance Swimming System

06.05.2004


Looks can be deceiving, the saying goes, and the same can be said of animals in the marine environment. To the casual observer, it would appear that the mighty great white shark and the common tuna don’t have a lot in common. In fact, just the opposite is true, according to new research led by scientists at Scripps Institution of Oceanography at the University of California, San Diego, and their colleagues in Germany.





In the first exploration of muscle dynamics in live lamnid sharks (a group that includes the great white and mako), the researchers found that in fact tunas and lamnids share a surprisingly close array of swimming muscle dynamics.

Scientists who study large fish in the open ocean have long noted the similarities in species that exhibit high-performance swimming mechanics, particularly those built for fast and continuous motion. For example, such swimming is exhibited in lamnid sharks, which have long been suspected of sharing a basic locomotor design with tunas.


"Tunas and lamnid sharks have a body form that represents an extreme in biomechanical design for high-performance swimming," said Scripps’s Jeanine Donley, the first author of the study appearing in the May 6 issue of the scientific journal Nature. In fact, the research study, she says, reveals an "unprecedented level" of similarity between the two, including the dynamics of steady swimming and functional design of their complex locomotor systems.

The researchers set out to investigate the evolutionary crossroads between lamnid sharks and tunas in regards to the mechanics and architecture of their muscle-tendon systems. Recent research has uncovered a muscle design in tunas that separate them from their related "bony" fishes (see http://scrippsnews.ucsd.edu/pressreleases/shadwick_tuna1.cfm). But similar investigations probing the biomechanical designs of lamnid sharks had not been successful, mainly due to the extreme difficulty in studying such large, elusive and dangerous predators.


"As apex predators in the ocean these sharks are important and becoming rare," said study coauthor Robert Shadwick, a professor in the Marine Biology Research Division at Scripps. "In this study we have found that lamnid sharks have diverged from their shark ancestors in the mechanical design of their swimming apparatus, just as tunas diverged from their bony fish ancestors in much the same way over the last 50 million years or so."

Donley and her colleagues used several research methods during the study. These included analyzing video recordings of mako sharks in a swim tunnel (see video). They also used a device called a sonomicrometer to precisely record muscle shortening and lengthening during swimming activity. And they used an array of computer-based techniques to explore the three-dimensional characteristics of shark tendons and how they connect to muscles.

The combined results, which remarkably matched similar studies in tunas, displayed a unique biomechanical design in which powerful red muscles in the front of lamnid sharks transfer energy to the tail region. This high-performance muscle system serves for powerful swimming propulsion, not unlike a natural, thrust-producing hydrofoil.

"It’s interesting because the area of the body that is producing this motion is not the same area of the body that is moving back and forth-it’s physically separated," said Donley. "It’s exactly like tuna in that respect."

The authors say these characteristics distinguish lamnid sharks and tunas from virtually all other fish and arose independently in each, most likely the result of evolutionary selection for fast and continuous locomotion. Shadwick says in this respect lamnids and tunas are more like each other than they are to their closest relatives.

The authors believe the study shows that not only have the physical demands of the external environment sculpted the body shapes of these species, but also the internal physiology and "morphology," or form and structure, of their complex locomotor systems have been fine-tuned over the course of their evolution.

"Sharks and bony fishes have been separated for over 400 million years and yet we see one group of sharks and one group of bony fish that share a remarkable host of similarities in body form and function," said Donley. "It’s interesting to understand how mechanical design principles influence the evolution of locomotion in these animals." (See video) Coauthors of the research paper, in addition to Donley and Shadwick, include Chugey Sepulveda of Scripps Institution, and Peter Konstantinidis and Sven Gemballa of the University of Tübingen in Germany.

Funding for the study was provided by the National Science Foundation and the University of California Regents.

Mario Aguilera | Scripps
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=633
http://scrippsnews.ucsd.edu/pressreleases/shadwick_tuna1.cfm

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>