Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unnatural light-dark cycles expose duelling circadian clocks

04.05.2004


In mammals, the endogenous daily pacemaker that regulates circadian rhythms like sleep and wakefulness is localized to a defined site in the brain, the suprachiasmatic nucleus (SCN), which is composed of many neurons whose circadian activities are in synchrony with one another. By exposing rats to a very short day/night schedule – a regimen that effectively pushes the limits of the SCN’s ability to set the clock to day length – researchers have discovered within the SCN two sub-clocks that normally oscillate in unison, but can become disconnected from one another as a result of artificial day/night cycles. One clock followed the artificially short 11-hr. day/11-hr. night schedule, while the other followed a longer cycle (>24 hrs.), but both clocks controlled behavioral rhythms within an individual animal.



The researchers, Horacio de la Iglesia and William Schwartz of the University of Massachusetts Medical School in Worcester, collaborating with Trinitat Cambras and Antoni Díez-Noguera of the University of Barcelona, found that the two locomotor activity rhythms reflected the separate oscillating activities of two areas within the SCN – essentially the top and bottom halves – that correspond to previously described anatomical subdivisions.

The results add to a growing awareness that it is a network of multiple oscillators, not only throughout the brain and body but also within the SCN itself, that underlies the workings of the circadian timing system. In humans, some of the symptoms arising from jet lag or rotating work schedules might not be due to the desynchronization between the central brain pacemaker and downstream oscillators in the body, but rather from the uncoupling of oscillators within the central pacemaker itself.



Horacio O. de la Iglesia, Trinitat Cambras, William J. Schwartz, and Antoni Díez-Noguera: "Forced Desynchronization of Dual Circadian Oscillators Within the Rat Suprachiasmatic Nucleus"

Publishing in Current Biology, Volume 14, Number 9 May 4, 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>