Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism found that may improve ability of stem cells to fight disease

04.05.2004


Findings published in current issue of Nature Cell Biology



Adult stem cell transplantation offers great therapeutic potential for a variety of diseases due to their ability to replenish diseased cells and tissue. While they are unique in this ability, it remains a challenge to effectively treat disease long-term with stem cells because of our inability to grow them in the laboratory. Defining the molecular switch in the stem cell replication process, or cell cycle, is a key step to stimulating their growth for broader clinical use.

In the May issue of Nature Cell Biology, Tao Cheng, M.D., assistant professor, department of radiation oncology, University of Pittsburgh School of Medicine, and colleagues report the discovery of a molecular mechanism in the cell cycle that appears to impact the replicating ability of stem cells from bone marrow and blood to fight disease. They found that blood stem cells from mice missing a gene called p18 were much better able to multiply and grow. p18 is a molecule in a class of so-called "cyclin-dependent kinase inhibitors" that are critical inhibitors of cell cycle control.


In the study, Dr. Cheng and his team isolated p18-deficient stem cells from mice and found that these cells were much more efficient at repopulating injured bone marrow tissue. As a result, they concluded that blocking the function of p18 may be a productive way to enhance the efficacy of stem cell transplantation as a treatment for diseases.

"Stem cells have great potential, but we need to develop novel strategies to help them proliferate to better fight diseases," said Dr. Cheng, also stem cell biologist at the University of Pittsburgh Cancer Institute. "By using stem cells deficient in p18, we found a strikingly improved long-term engraftment of stem cells in bone marrow leading us to the conclusion that p18 is a strong inhibitor to stem cell self-renewal. This is an exciting finding because it may lead to a new medical invention that can improve the ability of stem cells to self-renew, and thus, more effectively treat a wide range of diseases including cancer."

Stem cells give rise to blood cells with various essential functions, from carrying oxygen to providing immunity against disease. Preserving the function of stem cells and correcting any defects is essential to fighting disease and maintaining health. Stem cell transplantation is a common treatment for patients with advanced or recurrent cancers of the blood, such as leukemia and lymphoma.

The study was funded in part by grants from the National Institutes of Health. Co-first-authors include Youzhong Yuan, M.D., Ph.D., and Hongmei Shen, Ph.D., at the University of Pittsburgh Cancer Institute. Other collaborators and co-authors include David S. Franklin, Ph.D., Purdue University and David T. Scadden, M.D., Massachusetts General Hospital and Harvard Medical School.


ADDITIONAL CONTACT:
Michele Baum
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: BaumMD@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>