Genetic sequence identified for anti-bacterial sea slug protein

Compound could be used to prevent biofilm formation

A Center for Behavioral Neuroscience research team led by Georgia State University biologist Charles Derby has identified the genetic sequence of an anti-microbial protein called Escapin found in the ink of the common Aplysia sea slug or hare. The finding could have implications for the development of new anti-bacterial industrial compounds to prevent the formation of damaging biofilms on marine materials such as ship hulls, fishing traps and nets.

When encountering predators, sea slugs discharge a purple ink containing Escapin which chemically resembles toxins of some venomous snakes. Among its properties, the protein causes foreign cells to lyse or explode and prevents bacteria from growing on sea hares.

Derby, whose team has sequenced, cloned and expressed Escapin, believes a natural or synthetic form of the protein could be manufactured for the marine industry as an environmentally friendly alternative to toxic heavy metals, such as copper, normally applied on materials to prevent biofilm development. Biofilm formation is the precursor to the growth of barnacles and other damaging organisms that must be removed through costly and time-consuming processes.

Derby, who has filed a provisional patent for Escapin’s genetic sequence, plans to submit an academic paper for publication on the protein within the next several months. His research team includes former doctorate student and postdoctoral researcher Paul Johnson, GSU researchers Hsiuchin Yang, Phang Tai and Cynthia Kicklighter.

CBN, a National Science Foundation Science and Technology Center consisting of more than 90 neuroscientists at eight metro Atlanta colleges and universities, conducts research on the basic neurobiology of complex social behaviors. Its programs have lead to a breakthrough treatment for anxiety-related disorders and new understanding of the potential roles of the neurochemicals vasopressin and oxytocin in autism. CBN’s workforce training programs also have contributed significantly to enhancing the diversity of Georgia’s burgeoning biotechnology industry.

Media Contact

Poul Olson EurekAlert!

More Information:

http://www.emory.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors