Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe long-perplexing ’magic spot’ on bacteria

30.04.2004


Scientists have unraveled the behavior of one key component of bacteria, a finding that may lead to better, more effective antibiotics.


Irina Artsimovitch



The researchers studied a mechanism of action they call the "magic spot" – an important regulator of gene expression. They describe their results in the current issue of the journal Cell.

Researchers know that the magic spot – a molecule known as guanosine-tetraphosphate or ppGpp – is involved in how bacteria respond to amino acid starvation. More recently, researchers have discovered that ppGpp is an important part of pathogens that cause illnesses such as cholera and Legionnaires’ disease.


A cell makes ppGpp when amino acid levels are low.

"Microbiologists have wondered for a half-century how this small molecule with a relatively simple structure could have such a profound effect on regulating a cell’s survival," said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University. She collaborated on this work with study lead author Dmitry Vassylyev, of the RIKEN Institute in Japan.

ppGpp controls what researchers call the "stringent response" – a condition of nutritional starvation. When amino acid pools in a cell are exhausted, ppGpp accumulates and shuts down the synthesis of new proteins. The cell goes dormant until amino acid levels return to normal.

By learning the structure of ppGpp and how it interacts with the enzyme RNA polymerase – the main enzyme that controls gene expression in a cell – the researchers were able to describe in detail the "magic" behind the magic spot, Artsimovitch said.

"This study sheds a good deal of light on the inner workings of the molecular machinery that carries out gene expression in bacteria," she said. "Knowing this can serve as a basis for a new type of antibiotics.

In related work reported in a recent issue of the Journal of Bacteriology, Artsimovitch led a team of researchers in learning how a protein that is specific to illness-causing bacteria might provide another potential path to developing antibiotics against bacteria that cause cholera, pneumonia and food poisoning.

This protein, called RfaH, regulates virulence – a bacterium’s ability to cause disease – in pathogens such as Escherichia coli and Salmonella enterica, bacteria that cause food poisoning in humans.

Artsimovitch and her colleagues identified previously overlooked RfaH genes in other bacterial pathogens, such as those that cause cholera and bubonic plague.

"Not only do RfaH proteins from different bacteria look similar, they act similar, too," she said.

Without RfaH, enterobacteria can’t cause disease, Artsimovitch said. It’s plausible that drug developers could design an antibiotic that knocks out RfaH, effectively shutting down a bacterium’s virulence.

"We’re trying to give the scientists who work on these pathogens detailed models of RfaH and ppGpp behavior," Artsimovitch said. "That may lead to better-targeted antibiotics that can really be effective against these diseases."

Support for these studies came from the American Heart Association and the National Institutes of Health.

Artsimovitch and Vassylyev conducted the work reported in Cell with researchers from the RIKEN Harima Institute in Hyogo, Japan; the RIKEN Genomic Sciences Center in Yokohama, Japan; the National Food Research Institute in Ibaraki, Japan; and the University of Tokyo. Artsimovitch conducted the work reported in the Journal of Bacteriology with Ohio State researchers Heather Carter and Vladimir Svetlov.


Contact: Irina Artsimovitch, (614) 292-6777;
Artsimovitch.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/shutbac.htm

More articles from Life Sciences:

nachricht Machine learning, imaging technique may boost colon cancer diagnosis
06.12.2019 | Washington University in St. Louis

nachricht The 136 Million Atom-Model: Scientists Simulate Photosynthesis
06.12.2019 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Lights on fishing nets save turtles and dolphins

06.12.2019 | Ecology, The Environment and Conservation

Machine learning, imaging technique may boost colon cancer diagnosis

06.12.2019 | Life Sciences

'Virtual biopsy' allows doctors to accurately diagnose precancerous pancreatic cysts

06.12.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>