Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Something old, something new

23.04.2004


Scientists glean new insight from prematurely old mice



The relationship between genome integrity and aging is the subject of a new report in the upcoming issue of Genes & Development. Drs Lin-Quan Sun and Robert Arceci at Johns Hopkins University School of Medicine have developed a novel mouse model to study premature aging, and the genetic events that contribute to normal development and longevity.

"The inability of an organism to maintain the integrity of its genome has been postulated to be an important cause of aging, developmental abnormalities and predisposition to cancer," explains Dr. Arceci, corresponding author and professor of pediatrics and oncology at The Johns Hopkins Kimmel Cancer Center.


Dr. Arceci and his colleagues focused on PASG (Proliferation Associated SNF2-like Gene). PASG encodes a SWI/SNF protein family member that facilitates DNA methylation (the addition of a methyl (CH3) group to cytosine) – an effective means to silence genes in the eukaryotic genome. As an organism develops, global patterns of DNA methylation change in order to accommodate the changing patterns of gene expression.

Now, for the first time, Drs Sun and Arceci provide in vivo evidence that the loss of PASG results in a reduced level of global genomic methylation and premature aging in mice.

"In order to elucidate the function of PASG, we generated a "knockout" mouse carrying a hypomorphic mutation of PASG. Using homologous recombination, exons 10, 11 and 12 containing helicase domains II, III and IV were deleted," states Dr. Arceci.

These PASG-mutant mice displayed numerous abnormalities, including developmental growth retardation and characteristics associated with premature aging, including graying and loss of hair, reduced skin fat deposition, osteoporosis, cachexia and, ultimately, an untimely death. On a cellular level, PASG-mutant animals displayed reduced levels of genomic methylation, as well as increased expression of senescence-associated tumor suppressor genes, like p16INK4a.

Dr. Arceci is hopeful that "the mutant mice provide a potentially useful model for the study of aging as well as the mechanisms regulating epigenetic patterning during development and postnatal life. They may also serve as a potential model for examining the role of epigenetic change and chromatin remodeling in cancer predisposition with implications for possible therapeutic targeting."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Researchers at the University of Freiburg use new method to investigate neural oscillations
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dragonflies move to the city
14.02.2020 | Technische Universität Braunschweig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>