Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify leukemia-linked pathway targeted by a new kinase inhibitor

19.04.2004


New target blocks B-ALL, boosts Gleevec’s effectiveness against CML in mice



Three years ago, using the first of a new class of drugs known as "small molecule kinase inhibitors," medicine slammed shut a door used by cancer. Researchers at The Jackson Laboratory just found another door that kinase inhibitors may close to cancer.

The gene BCR-ABL1 causes two types of leukemia: chronic myelogeneous leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL). In both cancers, enzymes that should regulate the growth and development of white blood cells go awry, resulting in uncontrolled growth of the cells. The Swiss-based pharmaceutical company Novartis developed Gleevec, the first kinase inhibitor used to fight cancer by blocking the errant enzyme. It proved effective against chronic phase of CML, but not the advanced phase or against B-ALL. In some patients, it seems CML can develop a resistance to Gleevec.


In the May 2004 issue of Nature Genetics, a research team headed by Shaoguang Li, M.D., Ph.D., of The Jackson Laboratory, announces success with another kinase inhibitor that blocks a different path used by cancer. Studying mice, the researchers discovered that the BCR-ABL1 gene activates three additional enzymes that lead to B-ALL leukemia. One of these enzymes may also be involved when CML patients no longer respond to Gleevec.

"Because of drug resistance, it becomes increasingly difficult to stop progression of and cure this disease by targeting at only one place in a multi-molecule-involved signaling pathway used by cancer," says Dr. Li. "So we needed to find a combined drug therapy targeting simultaneously more than one places in the pathway."

First, the team developed the first efficient and accurate mouse models of both forms of BCR-ABL1-induced leukemia. Next, they discovered that three of the Src kinase class of enzymes are required for B-ALL but not for CML, suggesting that different therapeutic strategies should be used for treating these two diseases although they are induced by the same BCR-ABL1 cancer-causing gene. Finally, in drug treatment studies, they found that the kinase inhibitor, known as CGP76030 produced by Novartis, blocked those three critical Src kinase enzymes. The drug impaired the proliferation of B-lymphoid leukemic cells and prolonged the survival of mice with B-ALL. Their findings suggest additional therapeutic agents for treating this type of leukemia in humans.

ALL is the type of leukemia that predominantly strikes children. Among ALL cases, 85% are of the B-ALL type.

According to oncologist-turned-researcher Dr. Li, the preclinical studies suggest a specific prediction: "Drugs targeting the Src kinases may be useful for the therapy of BRC-ABL1-induced acute leukemia, particularly B-ALL. While these drugs are not effective or useful during the chronic phase of myeloid leukemia, there may be a rationale for dual kinase inhibitor therapy of more advanced leukemia. Increased activation of Src kinases has been observed in CML patients who have become resistant to Gleevec."

Dr. Li and his team are currently developing additional mouse models lacking in different combinations of the Src kinases, in an effort to make available a range of targeted therapies for this category of cancer.

Collaborating with Dr. Li and members of his laboratory (Dr. Yiguo Hu, Dr. Yuhua Liu and Shawn Pelletier) were Drs. Richard Van Etten (Tufts-New England Medical Center, USA), Elisabeth Buchdunger and Doriano Fabbro (Novartis Pharma AG, Switzerland), Markus Warmuth (Novartis Pharma AG, USA), and Michael Hallek (Universität zu Köln, Germany). The research was supported by grants from the Irving A. Hansen Foundation and The V Foundation for Cancer Research to Shaoguang Li, and the National Institutes of Health and a Leukemia and Lymphoma Society SCOR grant to Richard A. Van Etten.

Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Y. Hu, Y. Liu, S. Pelletier, E. Buchdunger, M. Warmuth, D. Fabbro, M. Hallek, R.A. Van Etten, S. Li. Nature Genetics: vol. 35, no. 5, published online April 18, 2004.

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>