Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell research uncovers intriguing clues to ’trojan horse’ gene in HIV infection

07.04.2004


Researchers are probing details of how HIV commandeers genes in infected cells to disguise itself from the immune system. The researchers, from The Children’s Hospital of Philadelphia, have identified cellular proteins expressed during HIV infection that enable HIV-infected cells to avoid apoptosis, a common cell suicide event. This survival mechanism allows the virus to maintain the infection within the compromised cells.



These findings, as yet based on studies in cells, not in patients, may potentially lead to future treatments that could fully eliminate a patient’s HIV infection.

Current treatments for HIV and AIDS rely on a combination of drugs called highly active anti-retroviral therapy (HAART). "Although HAART drives down the HIV to undetectable levels, latent (or silent) infection may surge back if the treatment is interrupted," said the study’s lead author, Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children’s Hospital of Philadelphia.


"Furthermore, HAART does not work for some patients, while other patients are unable to tolerate the treatment’s strong side effects," added Dr. Finkel. "Therefore, we urgently need new treatment approaches, including ways to prevent latent infection." The study by Dr. Finkel and her colleagues Jiyi Yin, M.D., and Maria Chen appears in the March issue of the journal AIDS.

The study builds on previous research by Dr. Finkel that showed, contrary to prevailing dogma, HIV does not always kill infected immune cells. Instead, it kills bystander cells and somehow prevents at least some infected cells from dying. "HIV works as both a sword and shield," said Dr. Finkel. "It destroys some immune cells, while taking over the genetic machinery of other immune cells and protecting itself within those cells."

Other researchers had demonstrated HIV’s ability to remain latent within normal-appearing, but infected cells despite anti-retroviral therapy. This ability, said Dr. Finkel, implies that some mechanism must be protecting the infected cells from apoptosis, or programmed cell death.

Dr. Finkel and colleagues used a genetic-based technique called suppressive subtractive hybridization to identify gene products involved in maintaining cell survival, despite HIV infection. By comparing dying T cells with surviving T cells, the researchers identified proteins that were associated with cell survival.

"Our evidence strongly suggests that a gene called HALP plays a crucial role in protecting HIV-infected cells," said Dr. Finkel. The gene had been discovered previously in humans, she added, but the current research is the first to describe HALP’s role in HIV infection. Closely related genes in mice and rats act against apoptosis. By dubbing the gene HALP, which stands for "HIV-associated life preserver," Dr. Finkel emphasized the gene’s role in protecting HIV’s home in host cells.

Dr. Finkel suggests that if HALP interferes with apoptosis, it may play both helpful and harmful roles. Highly similar genes in rats protect cells when blood circulation is interrupted. HALP may similarly exert a beneficial effect in humans during conditions of oxygen deprivation. However, it may be that HIV shanghais HALP for its own designs by promoting latency, which shields infected T cells from immune system attack, leaving them free to reproduce the virus. "HIV uses host cells as a Trojan horse, a safe haven for the virus to hide until it breaks out of latent infection to destroy other cells," said Dr. Finkel.

Dr. Finkel is pursuing further investigations to establish whether HALP indeed triggers the anti-apoptotic functions she discovered in the current study. By shedding light on additional genetic culprits in HIV infection, her studies may provide clues to new treatments. Future drugs could target the proteins that help HIV survive. Many steps, and years of work, separate this knowledge from the development of actual therapies, but, said Dr. Finkel, "Our hope is that better understanding of how HIV acts will lead to more effective treatments for patients."

Dr. Finkel holds a faculty appointment at the University of Pennsylvania School of Medicine. Her co-authors on the paper are Jiyi Yin, of Children’s Hospital Division of Rheumatology, and Maria F. Chen, of the University of Pennsylvania Department of Cell and Molecular Biology.


Providing support for this study were the National Institutes of Health, the University of Pennsylvania Center for AIDS Research and Cancer Center, the Bender Foundation, the Joseph Lee Hollander Chair at The Children’s Hospital of Philadelphia, and the W.W. Smith Charitable Trust.

"Differential gene expression during HIV-1 infection analyzed by suppression subtractive hybridization." AIDS. 2004, volume 18, pages 587-596.

Founded in 1855 as the nation’s first pediatric hospital, The Children’s Hospital of Philadelphia is ranked today as the best pediatric hospital in the nation by U.S.News & World Report and Child magazine. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children’s Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking second in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 430-bed hospital recognition as a leading advocate for children and adolescents from before birth through age 19.

Joey McCool | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>