Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Clues For Brain Cancer Treatment Found At The ESRF

05.04.2004


A team of researchers from the University Hospital of Grenoble (CHU – Inserm U647) and the ESRF1 has found a new treatment that improves the survival of rats with high-grade gliomas.



This research was carried out at the ESRF Medical Beamline. It showed that after a year of this treatment, three rats out of 10 were considered cured, whereas without treatment, all would be dead. The results have just been published in the scientific journal Cancer Research. A glioma is one of the most frequent brain tumours in human adults, and it is not curable. Clinical trials on humans are planned for the near future.

Today, the median survival for patients with glioma is less than a year. Around 5 to 10 adults out of 100.000 suffer from this brain tumour. Traditional radiotherapy using hospital X-rays only has a palliative effect because gliomas are some of the most radio-resistant human tumours. Chemotherapy is ineffective most of the time. Several therapeutic techniques have been developed over the last years using animal models, but none has had such successful results as this new treatment with cis-platinum combined with monochromatic synchrotron x-rays. This new technique combines chemotherapy with radiotherapy in such a way that both techniques are effective when associated.


In this study, a drug called Cis-platinum was injected into the brain of rats bearing F98 glioma. The substance entered the DNAs of the tumour and limited the tumoral proliferation. A day later, at the Medical Beamline of the ESRF, the tumour was irradiated with X-rays of a very precise energy (monochromatic) The difference between these X-rays and the conventional X-ray sources used in hospitals is the brilliance: the beam produced by the ESRF synchrotron is a hundred thousand times brighter than the beam produced by a hospital X-ray machine, allowing the beam to be tuned at a convenient wavelength.

This in vivo experiment was preceded by in vitro experiments on cells using the same tumoral model (F98). This tumour is extremely radioresistant and it spreads very quickly. The mean survival time of untreated rats was 28 days. If cis-platinum was injected, they survived up to 39 days. If the rats were irradiated with X-rays at a certain wavelength, it could result in a maximum of 48 days of survival. The combination of both treatments, with a specific radiation dose and a specific X-ray wavelength appeared to be the most efficient treatment tested and offered a mean survival time of around 200 days. This means a 6-fold increase in the life span of treated rats compared to those which didn’t receive any treatment.

The success of the trials has led CHU and ESRF researchers to envisage the elaboration of a protocol in order to use these techniques on humans. “There is a lot of technological development to be carried out, but it is feasible”, explains Doctor François Estève, one of the authors of the paper. “The ESRF Medical Beamline is a unique place in the world where pre-clinical and clinical research in radiotherapy with synchrotron radiation is possible nowadays” says Doctor Alberto Bravin, responsible for the Medical Beamline. Rats and humans don’t have so much physical resemblance, so doctors and physicists still cannot say whether they would have the same outstanding results if humans were treated. But François Estève is convinced that “taking into account the impossibility nowadays of healing this brain tumour, it is really a must to try this method”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>