Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing gene a potential risk factor for birth defects

01.04.2004


Research in mice examines how embryo protects itself from oxidative stress



Mouse embryos missing a gene that aids in the repair of DNA damage are at greater risk of developing birth defects, say U of T scientists. The finding has implications for research into the cause of birth defects in humans.

The gene, also found in humans, produces an important protein called ATM which senses DNA damage caused by reactive oxygen species and directs other proteins to repair it. Reactive oxygen species are a normal product of the body’s production of energy but can jump to toxic levels when cells are exposed to certain drugs, environmental chemicals and agents such as ionizing radiation.


In a study published online by the FASEB Journal in March, researchers at U of T’s Leslie Dan Faculty of Pharmacy found that mice embryos genetically engineered to lack one or both copies of the ATM gene and then exposed to ionizing radiation and a subsequent overload of reactive oxygen species were at increased risk for dying in utero, developing birth defects or experiencing other developmental problems after birth. Because the mice lacked the protection of the ATM protein, these problems occurred even though the level of radiation was far below that which would normally affect a developing embryo.

"Although these pathways have not been investigated in the human embryo, these findings in mice provide new insights into how the embryo protects itself from oxidative stress and the associated risk factors for embryonic death and abnormal development," says senior author Professor Peter Wells. "This research provides evidence that the ATM gene protects embryos from birth defects initiated by DNA damage. In fact, when this gene is missing in mice, even without exposure to drugs, the normal physiological production of reactive oxygen species can be enough to damage the embryo. The next step is to see if this holds true for humans."

The prevalence of humans missing one copy of the ATM gene is relatively common, around one to two per cent of the population, says Wells. There is also a rare condition known as ataxia telangiectasia or AT in which people have no copies of the gene and are highly susceptible to problems such as neurological disorders and cancer.

Not much is known about why some children are more susceptible to birth defects than others, says Wells. If future research found that humans had the same sort of ATM sensitivity as mice, he says, it would suggest the potential for diagnostic tests to determine if an embryo is at risk for birth defects because it lacks the gene and even for possible protein therapies to help counteract ATM deficits in embryos.

"We want to see if the mechanisms that occur in mice will explain what occurs in humans or not," he says. "It’s like a Las Vegas slot machine, in reverse. If all the bad lemons lined up - if you had a lot of risk factors, such as no ATM gene combined with exposure to certain drugs and lack of other pathways that protect against reactive oxygen species - you’d be in big trouble, according to our theory in mice. If it’s only a few of the lemons, the risk for developing birth defects or dying in utero would be lower."

The study, by lead author and PhD candidate Rebecca Laposa, was funded by grants and a doctoral award from the Canadian Institutes of Health Research and by a Society of Toxicology fellowship. Other researchers involved in the study were pharmacy professor Jeffrey Henderson and undergraduate student Elaine Xu.

Jessica Whiteside | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040331a.asp

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>