Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing gene a potential risk factor for birth defects

01.04.2004


Research in mice examines how embryo protects itself from oxidative stress



Mouse embryos missing a gene that aids in the repair of DNA damage are at greater risk of developing birth defects, say U of T scientists. The finding has implications for research into the cause of birth defects in humans.

The gene, also found in humans, produces an important protein called ATM which senses DNA damage caused by reactive oxygen species and directs other proteins to repair it. Reactive oxygen species are a normal product of the body’s production of energy but can jump to toxic levels when cells are exposed to certain drugs, environmental chemicals and agents such as ionizing radiation.


In a study published online by the FASEB Journal in March, researchers at U of T’s Leslie Dan Faculty of Pharmacy found that mice embryos genetically engineered to lack one or both copies of the ATM gene and then exposed to ionizing radiation and a subsequent overload of reactive oxygen species were at increased risk for dying in utero, developing birth defects or experiencing other developmental problems after birth. Because the mice lacked the protection of the ATM protein, these problems occurred even though the level of radiation was far below that which would normally affect a developing embryo.

"Although these pathways have not been investigated in the human embryo, these findings in mice provide new insights into how the embryo protects itself from oxidative stress and the associated risk factors for embryonic death and abnormal development," says senior author Professor Peter Wells. "This research provides evidence that the ATM gene protects embryos from birth defects initiated by DNA damage. In fact, when this gene is missing in mice, even without exposure to drugs, the normal physiological production of reactive oxygen species can be enough to damage the embryo. The next step is to see if this holds true for humans."

The prevalence of humans missing one copy of the ATM gene is relatively common, around one to two per cent of the population, says Wells. There is also a rare condition known as ataxia telangiectasia or AT in which people have no copies of the gene and are highly susceptible to problems such as neurological disorders and cancer.

Not much is known about why some children are more susceptible to birth defects than others, says Wells. If future research found that humans had the same sort of ATM sensitivity as mice, he says, it would suggest the potential for diagnostic tests to determine if an embryo is at risk for birth defects because it lacks the gene and even for possible protein therapies to help counteract ATM deficits in embryos.

"We want to see if the mechanisms that occur in mice will explain what occurs in humans or not," he says. "It’s like a Las Vegas slot machine, in reverse. If all the bad lemons lined up - if you had a lot of risk factors, such as no ATM gene combined with exposure to certain drugs and lack of other pathways that protect against reactive oxygen species - you’d be in big trouble, according to our theory in mice. If it’s only a few of the lemons, the risk for developing birth defects or dying in utero would be lower."

The study, by lead author and PhD candidate Rebecca Laposa, was funded by grants and a doctoral award from the Canadian Institutes of Health Research and by a Society of Toxicology fellowship. Other researchers involved in the study were pharmacy professor Jeffrey Henderson and undergraduate student Elaine Xu.

Jessica Whiteside | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040331a.asp

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>