Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use novel technology to extract RNA from archive formalin-fixed paraffin-embedded tissue

31.03.2004


High quality outcomes allow researchers to identify cancer-related genetic changes that span years



For the first time, Fox Chase Cancer Center researchers have demonstrated the ability to extract RNA from formalin-fixed, paraffin-embedded tissue samples archived for up to five years. What’s more, the technology used retrieves high-quality samples, allowing researchers to identify cancer-related genetic changes. Accepted as a "late-breaking" abstract, the research was presented today at the 95th Annual Meeting of the American Association for Cancer Research by Renata Coudry, M.D., a research pathologist at Fox Chase Cancer Center.

"Recent advances in both laser-capture microdissection (LCM) technology and microarray technology have revolutionized our investigation of the genetic basis of human cancer," said Coudry. "Pure cell populations can now be isolated by LCM and evaluated for changes in gene expression that accompany the development of cancer. However, applying these techniques to archived clinical specimens has been limited by our inability to extract high-quality genetic material from routinely processed clinical samples."


Hospitals are required to store tumor samples from surgical procedures in case further testing is needed. Biopsy tissue and other tissue specimens are universally preserved by being fixed in formalin and embedded in paraffin, a process that was thought to compromise DNA and RNA integrity. Messenger RNA (mRNA) indicates the activity of genes, or gene expression.

The Paradise Reagent System developed by Arcturus Bioscience Inc. provides an integrated system to isolate and amplify mRNA for analyzing global gene expression in archival specimens.

By retrospectively correlating treatment outcomes and genetic profiles, scientists could learn what genes are involved in certain forms of a specific cancer and tailor individual therapy for each patient. "At Fox Chase, we used the technology with great success to compare the gene expression profiles of normal and colorectal tumor tissue that had been archived for up to five years," Coudry said. "We are already applying this methodology to the identification of new molecular targets that may serve as biomarkers of cancer risk and chemopreventive response."

The Fox Chase group used laser capture to microdissect colonic crypt tissues from the archived samples. They then developed genetic profiles using microarray, or "gene chip," technology to evaluate the genetic changes in the tissue. The procedure uses glass "chips" to hold thousands of gene fragments that can be visualized by a computer. Because genes RNA extracted from in a blood or tissue sample will bind to the corresponding gene fragment on the chip, researchers can analyze the expression of thousands of the sample’s genes at once.


As research pathologist, Coudry works in the Fox Chase laboratory of cell biologist Margie L. Clapper, Ph.D., director of chemoprevention research at Fox Chase. In addition to Coudry and Clapper, Fox Chase co-authors of the study include postdoctoral associate Sibele I. Meireles, Ph.D.; bioinformatician Radka Stoyanova, Ph.D.; Harry S. Cooper, M.D., vice chairman of clinical laboratories and chief of surgical pathology and immunohistochemistry; and Paul F. Engstrom, M.D., senior vice president for population science

Fox Chase Cancer Center, one of the nation’s first comprehensive cancer centers designated by the National Cancer Institute in 1974, conducts basic and clinical research; programs of prevention, detection and treatment of cancer; and community outreach. For more information about Fox Chase activities, visit the Center’s web site at www.fccc.edu.

Karen Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>