Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning how to erase electronic paper

30.03.2004


Developing electronic paper that can be written on and then erased with the touch of a button is a challenge. Sometimes the ink must adhere to the paper and other times bead up.



Getting it just right requires knowing how, on a molecular level, the liquid ink interacts with the solid paper.

Now Jeanne E. Pemberton has clarified why changing the electrical charge on electronic paper affects how well ink will stick.


The finding will further efforts to make a reusable tablet.

"The structure of water is different depending on whether the surface is charged or not," said Pemberton, the John and Helen Schaefer professor of chemistry at the University of Arizona in Tucson. "People have predicted this change, but no one has ever fully understood its molecular basis. Now we’ve seen it. This finding will help us predict how ink will interact with electronic paper."

Pemberton is the recipient of the American Chemical Society’s 2004 Award in Analytical Chemistry. At the symposium being given in her honor at the 227th ACS National Meeting in Anaheim, Calif., she’ll discuss her finding about electronic paper and other aspects of her work on liquid-solid interfaces. Her talk, "Chemical Measurement Science at the Interface," will be given on Monday, March 29 at 1:30 p.m. in Room 207D of the Anaheim Convention Center.

Pemberton’s specialty is studying what happens at the boundary between liquids and solids, an area called interfacial chemistry. She wants to know what’s going on right at the interface, the region where the layer of liquid just six or seven molecules deep interacts with the solid surface.

Knowing more about what happens at the interface will help with a variety of problems, including making better electronic paper, controlling corrosion, or figuring out whether some toxic chemical will stick to the soil or wash into the groundwater.

But studying the molecular interactions at the liquid-solid boundary is hard because the bulk of the liquid gets in the way, Pemberton said.

"Only sampling one-to-two nanometers of stuff is hard to do. That’s been the challenge," she said, adding that a nanometer is the length of only a couple of molecules.

So she figured out a way to create just the interface, without having the rest of the liquid present. She got the idea from noticing that if a solid object is dipped into water and removed, sometimes some of the water still clings to the object.

The method she and her research team developed, known as "emersion," applies a drop of liquid onto the end of a rotating cylinder. As the cylinder rotates, the liquid is spread into a thin film only a few molecules thick. Then the scientists use light beams of different energies to determine how the atoms in the liquid molecules are vibrating. The reseachers use that information to determine how the molecules in the boundary layer are different from molecules surrounded by lots of liquid.

"There are lots of other methods to study surfaces and interfaces and none has been as successful as emersion at understanding these solid-liquid interfaces at the molecular level," she said. Her research group is currently the only one in the world using the emersion method, which was developed in her laboratory.

So far, her team has used the method to figure out how water interacts with a solid that is chemically similar to electronic paper. Such paper is composed of a tiny checkerboard of cells, each of which can be individually charged.

If the cell has no charge, the water molecules are more attracted to each other than the paper, and they bead up. If the cell has an electrical charge, individual water molecules are attracted to the paper and spread out on it rather than sticking so strongly to one another.

Her finding will help make better electronic paper, she said, because knowing how the surface charge affects the structure of ink molecules at the interface is key to figuring out how to repeatedly write on and then completely erase the paper.

Providing a better understanding of a variety of liquid-solid interfaces is the goal of Pemberton’s research.

"You can’t have control at the subtle molecular level you need to make these technologies work without understanding the chemical nature of the interface," she said. "Mostly we don’t understand that yet."

Jeanne Pemberton | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Life Sciences:

nachricht From a plant sugar to toxic hydrogen sulfide
19.12.2018 | Universität Konstanz

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>