Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venom may power-out bloodstains from clothes

30.03.2004


Purveyors of snake oil and its mythical powers may not have had it all wrong, if preliminary findings with the Florida cottonmouth, bloodstains and a washing machine stay on target.



An enzyme extracted from the viper’s venom appears to help launder out notoriously stubborn blood spots on clothing, according to a report presented here today at the 227th national meeting of the American Chemical Society, the world’s largest scientific society.

"We have partially isolated a component of the Florida cottonmouth snake venom that’s capable of dissolving a blood clot and we’ve used this component to determine if it will help remove bloodstains from clothes," says Devin Iimoto, Ph.D., a biochemist at Whittier College who studies snake-venom enzymes for clinical applications. Two of Iimoto’s undergraduate students at the California liberal arts university described the results of the experiments with bloodstains in clothes at the Anaheim meeting.


The researchers applied the enzyme to spots of blood that had air-dried for one hour on swatches of white denim. The next morning they laundered the samples along with untreated bloodstained control swatches in a household washing machine with common laundry detergent and warm water. After drying the swatches, they saw the stains were noticeably fainter on those treated with snake venom than on those that simply went through the wash cycle without prior treatment.

The key seems to be a fibrinolytic enzyme — a component of venom that does not damage a victim’s blood vessels and nerves directly, but likely facilitates the spread of such toxins by hampering the body’s attempts to seal off the area of the wound. As the name suggests, the enzyme works by cleaving the blood protein fibrin, whose tough fibrous strands normally reinforce platelet plugs to form a patch, or scab, over breaches in the walls of blood vessels.

The idea to investigate a possible laundry application for the cottonmouth enzyme was sparked by a similar British study that used a different enzyme involved in blood clotting. That study was unsuccessful in removing bloodstains, but Iimoto felt that the venom enzyme might fare better if left in contact with the stain for a longer period and, he added, it would be an interesting research project for his students.

Iimoto and his students, Ryan Guillory and Mandar Khanal, extracted the enzyme from commercially available venom milked from the Florida cottonmouth, or water moccasin. In their tests with bloodstains, they varied such factors as the concentration of enzyme, the time it was allowed to work on the blood — Iimoto’s own, drawn by the school nurse — and whether a series of several small applications of enzyme solution worked better than one larger one.

"Now we’re trying to quantify our data, to make sure our numbers match what we’re seeing," says Guillory, a senior chemistry major who hopes to work in forensics.

With luck and further encouraging results, the group says, their snake venom enzyme may someday join other enzymes already in detergents to help scrub clothes clean. Meanwhile, they plan to test the cottonmouth venom with an array of variables. "For example," says Guillory, "we’ve heard both that hot water and cold water is best for removing bloodstains." The researchers hope testing will determine if water temperature actually makes a difference in the ability of the enzyme to remove bloodstains.

Funding for this study came from a grant provided by Research Corporation and from the Whittier College Faculty Research Fund.

Allison Byrum | EurekAlert!
Further information:
http://www.acs.org/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>