Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on spirochetes

29.03.2004


Major differences found between genomes of oral pathogen and related spiral-shaped bacteria that cause syphilis and lyme disease



Three centuries after a pioneering Dutch microbiologist first observed the spiral-shaped oral pathogen Treponema denticola, scientists have deciphered the bacterium’s entire DNA sequence and used comparative genomics to cast new light on other spirochete microbes.

The study by scientists at The Institute for Genomic Research (TIGR) and collaborators at Baylor College of Medicine and the University of Texas Health Science Center at Houston found profound differences between the gene content of T. denticola, which is associated with periodontal (gum) disease, and of other spirochetes that cause syphilis and Lyme disease.


"This highlights the power of comparative genomics to help us understand how related pathogens can cause completely different diseases," says Ian Paulsen, who led the sequencing along with fellow TIGR researcher Rekha Seshadri. Paulsen says the T. denticola genome "provides an excellent point of reference to study the biology of spirochetes."

The paper will appear in the April 13, 2004 issue of Proceedings of the National Academy of Sciences (PNAS) and was scheduled to be published online this week. The study was supported by the National Institute of Dental and Craniofacial Research (NIDCR), which is part of the U.S. National Institutes of Health.

The researchers found that T. denticola has more than twice as many genes as the spirochete that causes syphilis, T. pallidum, and that there is virtually no conservation of gene order (synteny) between the genomes of the two related microbes. The authors say that indicates that the two spirochetes’ divergence from a common ancestor "was an ancient event" in contrast to the more recent divergence of many other groups of bacteria from their ancestral relatives.

The genome study is expected to help scientists find out more about how oral pathogens interact in dental plaque to cause gum disease. T. denticola tends to aggregate in such subgingival plaque with Porphyromonas gingivalis, a bacterium that is associated with periodontitis, a gum disease that affects an estimated 200 million Americans. Having the complete genomes of both microbes will help researches study their interactions and possibly provide molecular clues to find targets for drugs to treat gum disease.

TIGR scientists and collaborators sequenced the genome of P. gingivalis last year and are now deciphering the genomes of six other oral-cavity bacteria and conducting a "meta-genomic" assay of mouth microbes. Of the estimated 500 microbial species in the human mouth, only about 150 species have been cultured in laboratories.

"The genome sequence reveals mechanisms used by T. denticola to colonize and survive in the complex environment of oral biofilms," says Seshadri, the study’s first author. TIGR’s collaborators in the PNAS study included Steven J. Norris at the UT Health Science Center at Houston and George M. Weinstock at Baylor College of Medicine’s Department of Molecular and Human Genetics.

In the PNAS paper, researchers reported that the genome of T. denticola "reflects its adaptations for colonization and survival" with other bacteria in plaque. Compared to other spirochetes (including an estimated 60 other treponomal species or phylotypes found in dental plaque), T. denticola is relatively easy to cultivate and manipulate genetically, making it an excellent model for spirochete research.

Spirochetes are distinguished by their spiral shapes and their ability to corkscrew their way through gel-like tissues, causing a number of different diseases. The father of microbiology, Antonie van Leeuwenhoek, had first sketched an oral spirochete – later named T. denticola – after viewing it through his primitive microscope in the 1670s. Even after three centuries, however, spirochetes are poorly understood in contrast to many other major types of bacteria.

So far, TIGR has sequenced the complete genomes of three spirochetes: T. denticola; T. pallidum, which causes syphilis; and Borellia burgdorferei, which causes Lyme disease. The genome of a fourth spirochete, Leptospira interrogans, which causes the disease Leptosporisis, was sequenced at the Chinese National Human Genome Center.

TIGR’s comparative analysis found that about half of T. denticola’s 2,786 genes are not present in the other three sequenced spirochetes. The 618 genes that all four spirochetes have in common include some genes that are not found in other types of microbes whose genomes have been sequenced.

"Having the genome sequences of several spirochetes provides a remarkable opportunity to study evolution," says Norris, who says all spirochetes are cousins even though they live in a wide variety of environments, including mud, clams, termite guts, ticks, and humans. By comparing the DNA sequences of more spirochetes, he says, "we may be able to get at the root of what makes a bacterium cause disease, live free in the environment, or even be beneficial to its host."

Claire M. Fraser, president of TIGR, says the sequence data "provide a new starting point" for exploring the molecular differences that may explain why and how T. denticola and T. pallidum cause such different diseases: "This study has revealed new insights into spirochete-specific biology as well as the evolutionary forces that have shaped these genomes."


The Institute for Genomic Research (TIGR) is a not-for-profit research institute based in Rockville, Maryland. TIGR, which sequenced the first complete genome of a free-living organism in 1995, has been at the forefront of the genomic revolution since the institute was founded in 1992. TIGR conducts research involving the structural, functional, and comparative analysis of genomes and gene products in viruses, bacteria, archaea, and eukaryotes.

Seshadri et al. (2004). Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci. [Scheduled for print publication in issue dated April 13, 2004. Manuscript No. 2003-07639]

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>