Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find deafness gene’s function

29.03.2004


A group of scientists at The Scripps Research Institute, at the University of California in San Diego, and at the Oregon Hearing Research Center and Vollum Institute at Oregon Health & Science University have discovered a key molecule that is part of the machinery that mediates the sense of hearing.



In a paper that will appear in an upcoming issue of the journal Nature, the team reports that a protein called cadherin 23 is part of a complex of proteins called "tip links" that are on hair cells in the inner ear. These hair cells are involved in the physiological process called mechanotransduction, a phenomenon in hearing in which physical cues (sound waves) are transduced into electrochemical signals and communicated to the brain. The tip link is believed to have a central function in the conversion of physical cues into electrochemical signals.

"In humans, there are mutations in [the gene] cadherin 23 that cause deafness as well as Usher syndrome, the leading cause of deaf-blindness," says Associate Professor Ulrich Mueller, Ph.D., who is in the Department of Cell Biology at The Scripps Research Institute and is a member of Scripps Research’s Institute for Childhood and Neglected Diseases.


A parallel study led by Mueller’s collaborator Teresa Nicolson, Ph.D., and her colleagues at the Oregon Hearing Research Center and Vollum Institute corroborated Mueller’s results by showing that when the cadherin 23 gene is deleted in mutant zebrafish, tip links never form.

Both studies explain how the cadherin 23 gene is a direct cause of certain types of deafness and suggest a potential therapeutic target for treating deafness.

The Physiology of Hearing and Deafness

Childhood and age-related hearing impairment is a major issue in our society. According to the National Institute on Deafness an Other Communication Disorders, one in three people older than 60 and about half of all people over 75 suffer some form of hearing loss. And about four out of every 100,000 babies born in the United States have Usher syndrome, the major cause of deaf-blindness.

Hearing is a classic example of a phenomenon called mechanotransduction, a process that is important not only for hearing, but also for a number of other bodily functions, such as the pereception of touch. It is a complicated process whereby spatial and physical cues are transduced into electrical signals that run along nerve fibers to areas in the brain where they are interpreted.

Sound starts as waves of mechanical vibrations that travel through the air from their source to a person’s ear through the compression of air molecules. When these vibrational waves hit a person’s outer ear, they go down the ear canal into the middle ear and strike the ear drum. The vibrating ear drum moves a set of delicate bones that communicate the vibrations to a fluid-filled spiral structure in the inner ear known as the cochlea. When sound causes these bones to move, they compress a membrane on one entrance of the cochlea and this causes the fluid inside to move accordingly.

Inside the cochlea are specialized "hair" cells that have symmetric arrays of stereocilia extending out from their surface. The movement of the fluid inside the cochlea causes the stereocilia to move. This physical change creates an electrical change and causes ion channels to open. The opening of these channels is monitored by sensory neurons surrounding the hair cells, and these neurons then communicate the electrical signals to neurons in the auditory association cortex of the brain.

In Usher syndrome and some other "sensory neuronal" diseases that cause deafness, the hair cells in the cochlea are unable to maintain the symmetric arrays of stereocilia.

A few decades ago, a molecular complex called the tip link was discovered in the stereocilia. These tip links connect the tips of stereocilia and are also thought to be important for the transmission of physical force to mechanically gated ion channels. For years, the molecules that make up the tip link were not known. Now Mueller and his colleagues have identified one of the key proteins that forms the tip link -- the protein cadherin 23.

The Molecular Detectives

The identification of cadherin 23 is a great example of molecular sleuthing.

For Mueller, who studies topics at the intersection of neuroscience and genetics, tip links appeared to be the key to understanding and addressing Usher syndrome, and the way forward was to identify the proteins in the tip links.

Mueller and his colleagues reasoned that one of the molecules in tip links would be the type of molecule that mediates cell-cell interactions and keep the stereocilia bundled. They also had evidence from studies of colleagues that these molecules were dependent upon calcium for their action.

With these facts in mind, they scanned all known proteins in the human and mouse genome to see which fit the profile, and they were able to focus in on two gene families -- the cadherins and the integrins.

The scientists then looked at the relative sizes of cadherins and the integrins. One particular cadherin protein, cadherin 23, appeared to be the right size. Combined with the fact that mutations in the cadherin 23 gene are associated with deafness and deaf-blindness, it became the prime suspect in their search.

In their Nature article, Mueller and his colleagues show that the protein cadherin 23 is expressed in the right place in the hair cell to be part of the tip link, that it has the correct biochemistry, and that it seems to be responsible for opening the ion channels. They also showed that cadherin 23 protein forms a complex with another protein called myosin 1c, which helps to close the channel once it is open.

They predict that these two proteins form a complex with the unknown ion channels, and they are now trying to identify other molecular components of the tip links.

Interestingly, age-related hearing loss in humans may also be related to problems in the tip links and defects in mechanotransduction. Point mutations in the cadherin 23 protein have already been associated with age-related hearing loss in mice. It will therefore be important to analyze the extent to which Cadherin 23 function may be affected in humans that suffer from age related hearing impairment.

The article, "Cadherin 23 is a component of the tip link in hair cell stereocilia" was authored by Jan Siemens, Concepcion Lillo, Rachel A. Dumont, Anna Reynolds, David S. Williams, Peter G. Gillespie, and Ulrich Mueller and appears as an Advance Online Publication (AOP) of the journal Nature on March 28, 2004. The article will also appear in print in an upcoming issue of the journal Nature. See http://dx.doi.org/10.1038/nature02483.


This work was supported by the National Institute on Deafness an Other Communication Disorders, The National Eye Institute, by a fellowship from the Boehringer Ingelheim Fonds, and by a C. J. Martin Fellowship from the National Health and Medical Research Council (Australia).

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/
http://dx.doi.org/10.1038/nature02483

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>