Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified gene linked to brain development

26.03.2004


Discovery of GPR56 sheds light on evolution of frontal lobes



With the identification of the gene responsible for a newly recognized type of mental retardation, researchers at Beth Israel Deaconess Medical Center (BIDMC) have also discovered what appears to be the key target in the evolution of the frontal lobes of the brain’s cerebral cortex. The findings, reported in the March 26, 2004, issue of the journal Science, offer a key insight into the complex puzzle of human brain development – and the evolution of human behavior.

"The cerebral cortex is the part of the brain that distinguishes humans from other species," explains the study’s senior author Christopher A. Walsh, MD, PhD, a Howard Hughes Medical Institute investigator in the Neurogenetics Division at BIDMC and Bullard Professor of Neurology at Harvard Medical School. "And the frontal lobes are the part of the cortex that govern social function, cognition, language, and problem-solving. Patients with damage to the frontal lobes exhibit changes in behavior, and frontal lobotomies were once performed to alter aggressive behavior."


Bilateral frontoparietal polymicrogyria (BFPP), a recessive genetic disorder characterized by mental retardation, gait difficulty, language impairment and seizures, results in severely abnormal architecture of the brain’s frontal lobes, as well as milder involvement of parietal and posterior parts of the cerebral cortex.

In this new study, lead author Xianhua Piao MD, PhD, and colleagues used magnetic resonance imaging (MRI) to identify BFPP patients, and then used linkage analysis, homozygosity mapping, and candidate gene analysis to identify the BFPP gene as GPR56, located on an area of chromosome 16.

"We showed that mutations in GPR56, which encodes an orphan G protein-coupled receptor [GPCR], were responsible for BFPP," explains Piao. GPR56 is expressed in the neural stem cells produced in the cerebral cortex, and plays an especially important role in the frontal portions of the cortex.

Walsh’s laboratory uses gene mapping to identify genes that disrupt the normal development of the brain’s cerebral cortex, thereby helping to define the clinical syndromes of certain human developmental disorders and develop diagnostic tests for at-risk individuals. These new findings, he says, suggest that GPR56 may have been a key target in the evolution of the cerebral cortex.

"The frontal lobes of the human brain are the most highly developed part relative to other animals and it has long been thought that the evolution of the frontal lobes parallels the development of human communication and civilization," Walsh adds. "The GPR56 gene is only found in higher animals that possess a frontal lobe. It has undergone significant changes, even among these species, suggesting it may be a target of evolution.

"Being able to access the complete sequence of the human genome has allowed us to identify increasing numbers of genes that are required for cortical development," he adds. "Although these genes cause mental retardation, by studying the biological function of their gene products we also gain insight into the normal development and function of the human brain."


In addition to Walsh and Piao, study co-authors include BIDMC researchers R. Sean Hill, Adria Bodell, and Bernard S. Chang; and A. James Barkovich, of the University of California, San Francisco, as well as many clinicians from around the world who provided DNA samples.


The study was funded by the Howard Hughes Medical Institute and by grants from the National Institutes of Health, the March of Dimes, and the McKnight Foundation. Beth Israel Deaconess Medical Center is a major patient care, teaching and research affiliate of Harvard Medical School, ranking third in National Institutes of Health funding among independent hospitals nationwide. The medical center is clinically affiliated with the Joslin Diabetes Center and is a founding member of the Dana-Farber/Harvard Cancer Care Center. BIDMC is the official hospital of the Boston Red Sox.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu/

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>