Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

There be dragons: New deep-sea predator species discovered

24.03.2004


Eustomias jimcraddocki
Credit: HARBOR BRANCH/T. Sutton


Dr. Tracey Sutton, a fish ecologist at the HARBOR BRANCH Oceanographic Institution in Ft. Pierce, Fla., has discovered a new species in a bizarre and elusive family of deep-sea predatory fish known collectively as dragonfish. The find, reported in the current issue of the journal Copeia, is the first new dragonfish species discovered in more than a decade.

The first specimen of the new species, dubbed Eustomias jimcraddocki, was large, compared to the average pencil-sized dragonfish at about six inches long and roughly the size of a hot dog. Sutton named it after Jim Craddock, a legend in the deep-sea fish biology field.

Sutton discovered the fish during an expedition to Bear Seamount, off New England, that was sponsored by the National Oceanic and Atmospheric Administration’s Office of Ocean Exploration. Now the head of HARBOR BRANCH’s Fish and Plankton Ecology Department, he was at the time a Postdoctoral Scholar at the Woods Hole Oceanographic Institution in Massachusetts.



"The fact that we are still finding new species in one of the best-studied oceanic regions in the world tells us there is still a lot more out there to be known," says Sutton, who is also a leader in the ambitious international effort to identify all ocean animal and plant species known as the Census of Marine Life.

Sutton plucked the new dragonfish from a net being used to sample the study area’s marine life. While identifying the catch on board, he realized that the specimen represented a new species. Later he traveled to the Smithsonian Institution and Harvard to do some fish sleuthing. In museum collections at those institutions, he found 13 additional specimens collected in the Atlantic over the past 30 years that had previously been either unidentified or misidentified. This work verified that the new species was in fact unique.

Dragonfish are so rare that scientists have often been forced to study and describe new species based on a single specimen. "I really wanted more than just one fish," says Sutton, "so I was relieved to find more."

As with all dragonfish, which live at depths ranging from about 600 to 3,000 feet, the new species has menacing teeth, and a mouth that can jut out to engulf prey as wide as it is. They also have small organs along their bellies that produce light, or bioluminescence, and that may serve as camouflage to make the fish blend in with faint sunlight from above, thus appearing invisible to potential predators below.

The distinguishing feature of dragonfishes is a long thin protrusion known as a barbel anchored at the fish’s chin that trails below its body. The barbels look like tree branches, and each species has a unique barbel pattern. At the end of the barbel is a bioluminescent organ the animals use like a fishing lure to attract prey, mainly lanternfish. If the barbels served only this function, scientists would expect all dragonfishes to have similar barbels. However, because the protrusions are so varied, some theorize the fish may also use them to identify other members of their own species for reproduction.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu/

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>