Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution’s twist

22.03.2004


USC study finds meat-tolerant genes offset high cholesterol and disease



When our human ancestors started eating meat, evolution served up a healthy bonus – the development of genes that offset high cholesterol and chronic diseases associated with a meat-rich diet, according to a new USC study.

Those ancestors also started living longer than ever before – an unexpected evolutionary twist.


The research by USC professors Caleb Finch and Craig Stanford appears in Wednesday’s Quarterly Review of Biology.

"At some point – probably about 2 1/2 million years ago – meat eating became important to humans," said Stanford, chair of the anthropology department in the USC College of Letters, Arts and Sciences, "and when that happened, everything changed."

"Meat contains cholesterol and fat, not to mention potential parasites and diseases like Mad Cow," he said. "We believe humans evolved to resist these kinds of things. Mad Cow disease – which probably goes back millions of years – would have wiped out the species if we hadn’t developed meat-tolerant genes."

Finch, the paper’s lead author, and Stanford found unexpected treasure troves in research ranging from chronic disease in great apes to the evolution of the human diet. They also focused on several genes, including apolipoprotein E (apoE), which decreases the risk of Alzheimer’s and vascular disease in aging human adults.

Chimpanzees – who eat more meat than any other great ape, but are still largely vegetarian – served as an ideal comparison because they carry a different variation of the apoE gene, yet lack human ancestors’ resistance to diseases associated with a meat-rich diet.

While chimpanzees have a shorter life span compared to humans, they demonstrate accelerated physical and cerebral development, remain fertile into old age and experience few brain-aging changes relative to the devastation of Alzheimer’s seen in humans today. Finch and Stanford argued that the new human apoE variants protected the chimpanzees.

In a series of "evolutionary tradeoffs," the researchers said, humans lost some advantages over those primates, but gained a higher tolerance to meat, slower aging and longer lifespan.

Still, if humans developed genes to compensate for a meat-rich diet, why do so many now suffer from high cholesterol and vascular disease?

The answer is a lack of exercise and moderation, according to the researchers.

"This shift to a diet rich in meat and fat occurred at a time when the population was dominated by hunters and gatherers," said Finch, a USC University Professor and holder of the ARCO-William F. Kieschnick Chair in the Neurobiology of Aging.

"The level of physical activity among these human ancestors was much higher than most of us have ever known," he said. "Whether humans today, with our sedentary lifestyle, remain highly tolerant to meat eating remains an open question researchers are looking into."

Stanford, co-director of the university’s Goodall Research Center, said that modern-day humans "tend to gorge ourselves with meat and fat."

"For example, our ancestors only ate bird eggs in the spring when they were available," he said. "Now we eat them year-round. They may have hunted one deer a season and eaten it over several months. We can go to the supermarket and buy as much meat as we want."

"I think we can learn a lesson from this," Stanford said. "Eating meat is fine, but in moderation and with a lot of exercise."

Gilien Silsby | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>