Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

King Tut liked red wine

15.03.2004


Ancient Egyptians believed in properly equipping a body for the afterlife, and not just through mummification. A new study reveals that King Tutankhamun eased his arduous journey with a stash of red wine.



Spanish scientists have developed the first technique that can determine the color of wine used in ancient jars. They analyzed residues from a jar found in the tomb of King Tut and found that it contained wine made with red grapes.

This is the only extensive chemical analysis that has been done on a jar from King Tut’s tomb, and it is the first time scientists have provided evidence of the color of wine in an archaeological sample. The report appears in the March 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


The earliest scientific evidence of grapes is from 60-million-year-old fossil vines, while the first written record of winemaking comes from a much more recent source, the Bible, which says Noah planted a vineyard after exiting the ark.

Scientists have detected wine in a jar from as far back as 5400 B.C., found at the site of Hajji Firuz Tepe in the northern Zagros Mountains of present-day Iran. But the earliest knowledge about wine cultivation comes from ancient Egypt, where the winemaking process was represented on tomb walls dating to 2600 B.C.

"Wine in ancient Egypt was a drink of great importance, consumed by the upper classes and the kings," says Maria Rosa Guasch-Jané, a master in Egyptology at the University of Barcelona in Spain. She and Rosa M. Lamuela-Raventós, Ph.D., a professor of nutrition and food science, have analyzed samples of ancient Egyptian jars belonging to the Egyptian Museum in Cairo and the British Museum in London.

One sample came from the tomb of King Tutankhamun, discovered in 1922 by Howard Carter in Western Thebes, Egypt. The inscription on the jar reads: "Year 5. Wine of the House-of-Tutankhamun Ruler-of-the-Southern-On, l.p.h.[in] the Western River. By the chief vintner Khaa."

"Wine jars were placed in tombs as funerary meals," Guasch-Jané says. "The New Kingdom wine jars were labeled with product, year, source and even the name of the vine grower, but they did not mention the color of the wines they contained." Scientists and oenophiles have long debated the type of grape that ancient Egyptians used in their wines.

Using a new method for the identification of grape markers, Lamuela-Raventós and her coworkers determined that the wine in this jar was made with red grapes.

Tartaric acid, which is rarely found in nature from sources other than grapes, has been used before as a marker for the presence of wine in ancient residues, but it offers no information about the type of grape.

Malvidin-glucoside is the major component that gives the red color to young red wines, and no other juice used in the ancient Near East and Mediterranean region contains it. As wine ages, malvidin reacts with other compounds forming more complex structures. The researchers directed their efforts toward developing a tool for breaking down these structures to release syringic acid.

Analysis of ancient samples requires a very sensitive method to minimize the amount of sample that needs to be used. To detect syringic acid, the researchers used a technique called liquid chromatography and mass spectrometry in tandem mode, which is known for its high speed, sensitivity and selectivity. This method has never before been used to identify tartaric acid or syringic acid, nor has it been used on any archaeological sample, according to the scientists.

Lamuela-Raventós and Guasch-Jané plan to use the new technique in more extensive studies of wine residues from other archaeological samples.

The Spanish Wine Culture Foundation and Codorniu Group provided funding for this research.

Allison Byrum | EurekAlert!
Further information:
http://www.acs.org/

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>