Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue cells can revert to stem cells

15.03.2004


Scientists at the Carnegie Institution in Baltimore, MD, have found that certain cells involved in egg development in the fruitfly can be stimulated to revert to fully functioning stem cells. "This finding could lead to new sources of stem cells from other tissues and other animals," commented Dr. Allan Spradling, director of the Carnegie department and co-author of the study published in the March 14 online issue of Nature.



The research conducted by Spradling — a Howard Hughes Medical Institute Investigator — and colleague Dr. Toshie Kai, involved so-called germline stem cells of the female fruitfly. These cells are precursors to eggs and begin their journey as stem cells living in a special environment called a niche. In the niche, a stem cell splits into two daughter cells, one of which leaves the niche to begin its transformation. Through a series of 4 divisions a cluster of 16 cells forms — an immature egg with 15 accompanying nurse cells. The researchers discovered that the cells in clusters of 4 and 8 cells can still return to the stem-cell state under appropriate conditions. Moreover, the reverted stem cells worked as well as normal stem cells. Flies with only reverted stem cells were as fertile as normal flies throughout adult life.

"For most stem cells, it has not been possible yet to determine how quickly their progeny cells lose the ability to function again as stem cells," Spradling noted. "In the fruitfly (Drosophila) ovary we could directly test this and found conditions where the cluster cells reverted to a stem-cell state and functioned throughout the entire life of the adult. We don’t know yet if this will be a general result that applies to other stem cells," cautioned Kai. "The progeny of germline stem cells might develop relatively slowly compared with other stem cell progeny, and thus retain their ’stemness’ longer."


The scientists made their discovery by placing the cell clusters in an unusual environment, the immature ovary of a developing Drosophila larva. "We think that two factors present in the larval ovary may have helped cause the cells to revert back to stem cells," Kai commented. "First, the larval ovary has an abundant supply of the fruitfly protein that is analogous to a protein (BMP4) involved in germ-cell development in developing mammalian embryos. It is required by fruitfly germline stem cells and maintains them in the niche. Second, the cells in the larval ovary are unlikely to block reversion, in contrast to the cells that cluster cells encounter normally." Providing the proper conditions for reversion is likely to be a major issue in future attempts to revert differentiating cells back into stem cells.

"Differentiated or partially differentiated cells are much more common in the body than stem cells," Spradling noted. "So harnessing them could be a valuable strategy in efforts to enhance tissue repair. Some animals that can regenerate lost parts seem to utilize differentiated cells as a source of progenitors, and not just pre-existing stem cells. We are very excited about what further studies in the fruitfly and other animals might show us," Spradling concluded.

Dr. Allan Spradling | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>