Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue cells can revert to stem cells

15.03.2004


Scientists at the Carnegie Institution in Baltimore, MD, have found that certain cells involved in egg development in the fruitfly can be stimulated to revert to fully functioning stem cells. "This finding could lead to new sources of stem cells from other tissues and other animals," commented Dr. Allan Spradling, director of the Carnegie department and co-author of the study published in the March 14 online issue of Nature.



The research conducted by Spradling — a Howard Hughes Medical Institute Investigator — and colleague Dr. Toshie Kai, involved so-called germline stem cells of the female fruitfly. These cells are precursors to eggs and begin their journey as stem cells living in a special environment called a niche. In the niche, a stem cell splits into two daughter cells, one of which leaves the niche to begin its transformation. Through a series of 4 divisions a cluster of 16 cells forms — an immature egg with 15 accompanying nurse cells. The researchers discovered that the cells in clusters of 4 and 8 cells can still return to the stem-cell state under appropriate conditions. Moreover, the reverted stem cells worked as well as normal stem cells. Flies with only reverted stem cells were as fertile as normal flies throughout adult life.

"For most stem cells, it has not been possible yet to determine how quickly their progeny cells lose the ability to function again as stem cells," Spradling noted. "In the fruitfly (Drosophila) ovary we could directly test this and found conditions where the cluster cells reverted to a stem-cell state and functioned throughout the entire life of the adult. We don’t know yet if this will be a general result that applies to other stem cells," cautioned Kai. "The progeny of germline stem cells might develop relatively slowly compared with other stem cell progeny, and thus retain their ’stemness’ longer."


The scientists made their discovery by placing the cell clusters in an unusual environment, the immature ovary of a developing Drosophila larva. "We think that two factors present in the larval ovary may have helped cause the cells to revert back to stem cells," Kai commented. "First, the larval ovary has an abundant supply of the fruitfly protein that is analogous to a protein (BMP4) involved in germ-cell development in developing mammalian embryos. It is required by fruitfly germline stem cells and maintains them in the niche. Second, the cells in the larval ovary are unlikely to block reversion, in contrast to the cells that cluster cells encounter normally." Providing the proper conditions for reversion is likely to be a major issue in future attempts to revert differentiating cells back into stem cells.

"Differentiated or partially differentiated cells are much more common in the body than stem cells," Spradling noted. "So harnessing them could be a valuable strategy in efforts to enhance tissue repair. Some animals that can regenerate lost parts seem to utilize differentiated cells as a source of progenitors, and not just pre-existing stem cells. We are very excited about what further studies in the fruitfly and other animals might show us," Spradling concluded.

Dr. Allan Spradling | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Scientists propose new theory on Alzheimer's, amyloid connection

23.04.2019 | Life Sciences

Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect

23.04.2019 | Life Sciences

Bacteria use their enemy -- phage -- for 'self-recognition'

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>