Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method produces uniform, self-assembled nanocells

12.03.2004


Nanotechnology is about making improved products by building them from components hundreds of times smaller than a human blood cell. But how do you put things together at such a tiny scale? One way is to create the right conditions, so that they assemble themselves.


The peaks on this three-dimensional plot indicate a high concentration of liposomes forming in a microchannel.



For example, a new method for producing uniform, self-assembled nanocells has been developed by researchers at the National Institute of Standards and Technology (NIST). Reported in the March 10 issue of the Journal of the American Chemical Society, the method may have applications as an improved method for encapsulating drug therapies. A patent application has been filed.

Current bulk methods for producing nanocells called liposomes---a type of artificial cell---produce particles in a wide range of sizes. The sizes must be sorted and filtered before being used for drug delivery, since dosage depends critically on size.


The new NIST method uses micrometer-size channels etched into a device to produce self-assembled liposomes of specific sizes from as large as about 240 nanometers (nm) to as small as about 100 nm. A stream of natural fats (lipids) dissolved in alcohol is directed at an intersection of two channels that looks like a micro version of a four-way stop. A water-based liquid containing medicines or other substances is sent toward the lipid stream from two opposing directions. Rather than mixing with the water, the lipids surround it, forming self-assembled nanocells.

Controlling flow rates in the microchannels produces nanocells of specific sizes. Faster flows produce smaller cells. Medicine-filled liposomes made in nanosizes should allow for more accurate drug delivery. In particular, liposomes have been studied for years as a way to concentrate the effectiveness of cancer chemotherapy while minimizing harmful side effects.

Scott Nance | EurekAlert!

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>