Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH research team grows long-lasting blood vessels

11.03.2004


Advance could solve major challenge in tissue engineering



Researchers from Massachusetts General Hospital (MGH) have successfully induced the growth of new networks of functional blood vessels in mice. In the March 11 issue of Nature, the team from the Steele Laboratory in the MGH Department of Radiation Therapy describes how their technique led to the growth of long-lasting blood vessels without the need for genetic manipulation. The accomplishment may help solve one of the primary challenges in tissue engineering: providing a blood supply for newly grown organs.
"The biggest challenge has been making blood vessels that will last," says Rakesh Jain, PhD, director of the Steele Laboratory and senior author of the Nature report. "Most artificially grown vessels die quickly, but these have survived successfully for a year – which is about half a lifetime for mice." He and his colleagues also note that the introduction of genes to induce vessel growth and survival could increase the risk of cancer.

The research team began with two types of blood-vessel-related human cells – endothelial cells that form the lining of blood vessels, taken from the veins of umbilical cords, and precursors to the perivascular cells that form the supporting outer layer of blood vessels. These cells were placed into a collagen gel and grown in culture for about a day. Then the gels were implanted into cranial windows, transparent compartments placed on the brains of mice. Similar gels containing only endothelial cells were also prepared and implanted.



Within a few days both types of implants began to form long, branched tubes. Tubes in the endothelial/perivascular cell implants soon connected to the mice’s own vessels and began to carry blood. They grew rapidly for about two weeks, and then reached a point of stability. However, implants containing only endothelial cells showed little or no connection to the mouse vasculature, and within two months the new vessels in those implants almost completely disappeared.

"The combined implants formed beautiful networks that survived and grew," Jain says. "As they matured, they appeared and functioned very much like normal vasculature tissue." Jain is Cook Professor of Tumor Biology at Harvard Medical School.

The researchers believe their technique could eventually allow the growth of new blood vessels from a potential recipient’s own cells and could also be a model system for future studies of vessel growth and maturation.


The study’s co-authors are Naoto Koike, MD, PhD; Dai Fukumura, MD, PhD; Oliver Gralla, MD, and Patrick Au, all of the Steele Laboratory; and Jeffrey Schechner, MD, of Yale School of Medicine. The research was partially supported by the National Cancer Institute.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>