Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of First Fungal Pathogen Unveiled

05.03.2004


Geneticists at the Duke Institute for Genome Sciences and Policy (IGSP) and the University of Basel have unveiled the complete genome sequence of the pathogenic plant fungus Ashbya gossypii, which infects agricultural crops including cotton and citrus fruits in the tropics. The fungus has the smallest genome yet characterized among free-living eukaryotes. Eukaryotes are the single-celled and multicellular organisms that include fungi, plants and animals.



The team -- led by Fred Dietrich, Ph.D., of the IGSP’s Center for Genome Technology, and Peter Phillipsen, Ph.D., of the University of Basel -- reported its findings online in the March 4, 2004, Science Express, the online version of the journal Science. The work was completed with the funding and collaboration of Novartis (now Syngenta) in Research Triangle Park, N.C. The researchers have no financial ties to Novartis or Syngenta.

The sequencing of the fungal genome has already shed light on the evolution of Saccharomyces cerevisiae -- the single-celled baker’s yeast that scientists rely on for the study of many basic questions in cell biology. Furthermore, understanding the infectious microbe’s genetic instructions might allow scientists to tease out the fundamental features responsible for some fungi’s ability to cause disease, the researchers said.


"We expect many similarities in function among all types of fungal pathogens -- whether they infect plants or humans," said Dietrich, first author of the study. "Understanding one will provide insight into fungal pathogens in general in terms of the forces that drive them."

Ashbya’s stripped-down genome -- containing just 9.2 million DNA base pairs, the fundamental building blocks of inheritance -- will further simplify the task of deciphering genes and their functions, he added. The genomes of other important fungal pathogens can include as many as 200 million base pairs, more than 20 times that of the Ashbya genome. In comparison, the genetic blueprints contained in each human cell run to some 6 billion DNA base pairs.

The researchers first sequenced the Ashbya genome three times over in many segments and assembled those pieces into the sequences of the fungus’ seven chromosomes. The team then filled in any remaining gaps in the initial scaffold through additional sequencing. By comparing the sequence information to the yeast genome, the investigators identified the location of genes along the chromosomes.

Ashyba’s 9.2 million base pair genome encodes 4,718 protein coding genes, the team reported. The fungus shares more than 90 percent of those with yeast, with most occurring in a similar gene order.

Further comparison of the Ashbya and yeast genomes revealed 300 instances of sequence inversion or movement of a segment from one location to another since the divergence of the two species. The analysis also revealed two copies of the majority of Ashbya genes in the yeast genome, evidence that the evolution of S. cerevisiae included a whole genome duplication.

The fully annotated sequence will be made publicly available on GenBank, the National Institutes of Health genetic sequence database.

"This is the culmination of the work of many people over more than 10 years," said Dietrich. "It’s very satisfying to finally be able to make this data public." The support of Novartis hinged on an agreement that the data not be made public until the genome was complete, he said.

Collaborators on the project included Philippe Luedi, of Duke University Medical Center; Sylvia Voegeli, Sophie Brachat, Ph.D., Anita Lerch, Sabine Steiner, Ph.D., Christine Mohr, Ph.D., and Rainer Pohlmann, Ph.D., of the University of Basel; Krista Gates, Albert Flavier, Ph.D., and Thomas Gaffney, Ph.D., of Syngenta Biotechnology in Research Triangle Park; and Sangdun Choi, Ph.D., and Rod Wing, Ph.D., of Clemson University in South Carolina.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7448

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>