Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa researchers describe method of protecting chromosomes during cell division

05.03.2004


One hallmark of most cancer cells is that they have the incorrect number of chromosomes, a state called aneuploidy. Now, researchers at the University of Virginia Health System, writing in a recent issue of the journal Current Biology, think they know how cells protect themselves from aneuploidy when they divide in a process known as mitosis. "During mitosis, the cell divides replicated chromosomes to two daughter cells. We are studying a mitotic system that ensures that each cell receives the right number of chromosomes," said article co-author Todd Stukenberg, assistant professor of biochemistry and molecular genetics at U.Va.



To function effectively, a human cell must have one copy of 46 different chromosomes, each containing two exact copies of a long DNA strand packaged into two sister chromatids. When a cell divides, it forms a spindle made up of thin polymers called microtubules extending from opposing sides of the cell.

During division, however, the cell is faced with a monumental sorting problem since all chromosomes look alike. So, nature has devised a solution – microtubules from one side of the cell must bind one chromatid, while microtubules from the other side bind the other. The cell then uses these microtubule connections to pull the two sister chromatids to opposite sides of the cell, and the cell is then cleaved between the two DNA masses. Aneuploidy may occur when this process goes awry and microtubules from opposite sides of the cell bind the same chromatid, which becomes stuck since it is pulled in both directions, Stukenberg said.


According to the study, researchers at the U.Va.’s Department of Biochemisty and Molecular Genetics, working with colleagues in U.Va.’s Department of Chemistry, have uncovered a mechanism that could correct these improper attachments – proteins that release improper microtubule attachments. A protein called Aurora B loads a substance called MCAK (mitotic centromere-associated kinesin) onto the chromosome in an inactive state. When a microtubule from the wrong side of the cell binds a chromatid, MCAK is activated and removes the improperly attached microtubule.

"Aurora B is a regulatory protein that has been previously implicated in this process," Stukenberg said. "It is very satisfying to find that a protein which it is regulating has the enzymatic activity required to remove improperly-attached microtubules. Many questions remain, however, and we at U.Va. are focusing on how MCAK is activated by improper attachments."

Aurora B is a kinase that regulates proteins by modifying amino acids. The researchers identified the specific amino acid on MCAK that was modified by Aurora B, and showed that the modification regulates MCAK activity. Cell injection studies showed the sites where this modification happens, which is crucial for the correct attachment of chromatids and microtubules during mitosis. The researchers also stained cells by immunofluorescence with antibodies to MCAK, phosphorylated MCAK and Aurora B, suggesting that Aurora B regulates MCAK to destroy incorrectly attached microtubules.

Early in the 20th century, some scientists proposed that aneuploidy may be one cause of cancer, Stukenberg said, but that theory was largely ignored for many years.

Now, recent research has "reinvigorated the theory," he said. "So it is important to study whether mutations in Aurora, MCAK or the inability to resolve improper microtubule attachments, is involved in tumor genesis. It is already clearly established that the Aurora family of kinases is overexpressed in many cancerous solid tumors."


Contributing to the study were the Department of Pathology at U.Va., and the Departments of Biology, Biochemistry and Molecular Biology, and Anatomy and Cell Biology at Indiana University.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>