Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Migraine mouse provides insight into neurobiology of devastating headaches

04.03.2004


Scientists have created a mouse model for migraine headache that may serve as an invaluable tool for future study of these debilitating headaches that are often accompanied by severe neurological symptoms. The research, published in the March 4 issue of Neuron, is a major step towards development of more successful treatments targeted at specific neurobiological events that underlie migraines.




Migraine is a common, chronic disorder characterized by recurrent disabling headaches. Approximately one-third of migraine sufferers have headaches preceded by a transient neurological aura of flashing jagged lights and pins and needles. Researchers from Leiden University Medical Centre in The Netherlands and the University of Padova and CNR Institute of Neuroscience in Italy examined a rare subtype of migraine called familial hemiplegic migraine (FHM) that is identical to other types of migraine except it is also associated with hemiparesis, weakness on one side of the body. FHM is associated with specific genetic mutations in a gene for a calcium channel protein that is involved in neuronal excitability. The researchers used a sophisticated genetic technique to create mice with a mutation seen in humans with FHM. Compared to normal mice, the migraine mice showed activation of calcium channels by weaker stimuli with consequent enhanced calcium entry into neurons, increased release of excitatory neurotransmitters, and increased susceptibility to cortical spreading depression (CSD), the phenomenon that underlies the migraine aura. "Previous studies have indicated that CSD is a wave of intense neuronal activity along the surface of the brain, followed by a long-lasting neuronal suppression. Our results suggest that in the migraine brain cortical hyperexcitability results in an increased susceptibility for CSD and aura," explains study coauthor Dr. Arn M.J.M. van den Maagdenberg.

The authors suggest that further studies are needed to identify a concrete link between FHM mutations, CSD, and activation of pain in the brain. According to coauthor Dr. Daniela Pietrobon, "Other studies have implicated CSD as a trigger for the pain associated with migraine. Drugs which reduce the activity of calcium channels in the migraine brain may make the brain more resistant to CSD and may thus be able to prevent migraine attacks." The FHM migraine mouse will provide a unique tool for future studies into the mechanisms of migraine as well as a promising model for testing new treatments aimed at preventing migraine by reducing hyperexcitability and preventing CSD.


Arn M.J.M. van den Maagdenberg, Daniela Pietrobon, Tommaso Pizzorusso, Simon Kaja, Ludo A.M. Broos, Tiziana Cesetti, Rob C.G. van de Ven, Angelita Tottene, Jos van der Kaa, Jaap J. Plomp, Rune R. Frants, and Michel D. Ferrari: "A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression"


Published in Neuron, Volume 41, Number 5, 4 March 2004, pages 701-710.

Heidi Hardman | EurekAlert!

More articles from Life Sciences:

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>