Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Sequences: Not So Predictable After All

04.03.2004


Scientists have believed for decades that the sequencing of the human genome would automatically yield the sequences of proteins, the functional products of genes, and thus lead to the unraveling of the mechanisms behind human cell biology and disease. However, a paper published in Science today by the Ludwig Institute for Cancer Research (LICR) describes a novel cellular process that casts some doubt on the accepted paradigm of deducing a protein’s sequence from the DNA sequence of its gene.

When a protein is called upon to act in a cellular process, segments (exons) of the gene’s DNA are transcribed into RNA fragments, which are then spliced (joined) together according to directions encoded by the DNA. The RNA transcript is then translated into amino acids which form a protein. When the protein is no longer required by the cell, it is degraded by a specialized complex called the ‘proteasome’. Although functionally different proteins can be produced from one gene sequence - by modification through the addition of small molecules to the amino acids, by truncation of the sequence, or by the translation of RNA transcripts that omit some exons - they are variations on a theme determined essentially by the gene’s DNA sequence. However scientists at the LICR Branch in Brussels, Belgium, have now shown that the sequence of a human protein can actually be altered by the proteasome in ways that are completely unpredicted by the gene sequence. The discovery is both a new process for protein processing and a novel, hitherto unsuspected role for the proteasome.

‘Post-translational splicing’ was discovered when the LICR team analyzed small protein sequences that activate the immune system in response to the presence of cancer cells. These ‘peptide antigens’ are created when the proteasome fragments a cancer-specific protein into peptides, which are then transported to the cell surface to mark the cell for immunological destruction. The team found that one peptide antigen, which stimulated the immune system to recognize and destroy melanoma cells, had a sequence quite unlike that predicted by its gene sequence. Upon investigating further, the researchers found that the proteasome had cut a peptide in three and had then rejoined the pieces so that the peptide antigen now recognized by the immune system was missing part of its original sequence.



“Post-translational splicing is a fascinating process in its own right,’ says Dr. Benoît Van den Eynde, the senior author of the study, “but it also has important implications for the design of cancer or HIV vaccines based on peptide antigens. Synthetic peptides being investigated in early-phase clinical trials of vaccines are usually designed based on the gene sequence of cancer-specific proteins. However post-translational splicing may be modifying the peptide antigens in ways that we haven’t even suspected before now.”

The issue of predicted versus post-translationally spliced, novel peptide antigens is a particularly important consideration when monitoring immunological responses to cancer vaccines in patients. The existing methodologies typically quantify the presence of T cells specific for the predicted peptide antigen, and would not detect T cells specific for the novel peptide antigen. Additional studies are required to determine if proteome-mediated post-translational splicing occurs in relation to cancer and/or virally-infected cells, and if so, the frequency of occurrence of such novel peptide antigens in these diseases.

The discovery of post-translational splicing has immunologists intrigued by the additional complications in antigen identification, and cell biologists excited by a new insight into the proteasome’s bag of tricks. However for geneticists and biochemists, the discovery of post-translational splicing may have produced a slight sense of unease. Until we know exactly when, why, and how often post-translational splicing occurs, we can no longer automatically assume that the human genome holds all the answers for predicting protein sequences.

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>