Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on memory could enhance learning

27.02.2004


New research in monkeys may provide a clue about how the brain manages vast amounts of information and remembers what it needs. Researchers at Wake Forest University Baptist Medical Center have identified brain cells that streamline and simplify sensory information – markedly reducing the brain’s workload.



The findings are reported in the on-line edition of the Proceedings of the National Academy of Sciences.

"When you need to remember people you’ve just met at a meeting, the brain probably doesn’t memorize each person’s facial features to help you identify them later," says Sam Deadwyler, Ph.D., a Wake Forest neuroscientist and study investigator. "Instead, it records vital information, such as their hairstyle, height, or age, all classifications that we are familiar with from meeting people in general. Our research suggests how the brain might do this, which could lead to ways to improve memory in humans."


The researchers found that when monkeys were taught to remember computer clip art pictures, their brains reduced the level of detail by sorting the pictures into categories for recall, such as images that contained "people," "buildings," "flowers," and "animals." The categorizing cells were found in the hippocampus, an area of the brain that processes sensory information into memory. It is essential for remembering all things including facts, places, or people, and is severely affected in Alzheimer’s disease.

"One of the intriguing questions is how information is processed by the hippocampus to retain and retrieve memories," said Robert Hampson, Ph.D., co-investigator. "The identification of these cells in monkeys provides evidence that information can be remembered more effectively by separating it into categories. It is likely that humans use a similar process."

The researchers measured individual cell activity in the hippocampus while the monkeys performed a video-game-like memory task. Each monkey was shown one clip art picture, and after a delay of one to 30 seconds, picked the original out of two to six different images to get a juice reward.

By recording cell activity during hundreds of these trials in which the pictures were all different, the researchers noticed that certain cells were more active when the pictures contained similar features, such as images of people – but not other objects. They found that different cells coded images that fit different categories.

"Unlike other cells in the brain that are devoted to recording simply an object’s shape, color or brightness, the category cells grouped images based on common features – a strategy to improve memory," said Terry Stanford, Ph.D., study investigator. "For example, the same cell responded to both tulips and daisies because they are both flowers."

The researchers found, however, that different monkeys classified the same pictures differently. For example, with a picture of a man in a blue coat, some monkeys placed the image in the "people" category, while others appeared to encode the image based on features that were not related to people such as "blue objects" or "types of coats."

While such categorization is a highly efficient memory process, it may also have a downside, said the researchers.

"The over generalization of a category could result in errors," said Deadwyler. "For example, when the trials included more than one picture with people in it, instead of different images, the monkeys often confused the image with a picture of other people." The researchers said that learning more about how the brain remembers could have far reaching benefits.

"If we can understand in advance how the brain works when decisions are made, we can predict when the brain will make a mistake, and correct it," said Tim Pons, Ph.D., an expert in monkey research and team member. "This finding about how large amounts of information are processed by the brain will help us to ultimately achieve that goal."

"This discovery by the Wake Forest team could be the solution to a big puzzle," said Mortimer Mishkin, Chief of the Section on Cognitive Neuroscience, National Institutes of Mental Health. "Recollection -- bringing back to mind a past event -- depends critically on the hippocampus, but we haven’t known how this works. The team’s new findings suggest that hippocampal ’category ’ neurons are some of the ones that help remind us of things we experienced before."


The research was funded by the National Institute on Drug Abuse, the National Institute of Mental Health and the Defense Advanced Research Projects Agency.

Media Contacts: Karen Richardson, krchrdsn@wfubmc.edu, or Shannon Koontz, shkoontz@wfubmc.edu, at 336-716-4587.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Molecular motors run in unison in a metal-organic framework
20.03.2019 | University of Groningen

nachricht Active substance from plant slows down aggressive eye cancer
20.03.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>