Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer method identifies potentially active enzymes

24.02.2004


Better drugs, improved industrial applications and even cleaner laundry may be possible with a new computer method to predict which hybrid enzymes are likely to have high activity, according to a team of Penn State chemists and chemical engineers.



"FamClash is quite successful at qualitatively predicting the pattern of the specific activity of the hybrids," the researchers report in this week’s online issue of the Proceedings of the National Academy of Sciences. "By identifying incompatible residue pairs in the hybrids, this method provides valuable insights for protein engineering interventions to remedy these clashes," the researchers say. FamClash is a computer method used to predict which hybrid enzymes are likely to have activity and which are not. Hybrid enzymes form when researchers combine similar enzymes from two or more different organisms. The variant enzymes are broken and recombined with parts from the original enzymes creating the new one.

"We have worked out ways to make libraries of novel enzymes by splicing proteins together," says Alexander R. Horswill, postdoctoral fellow in chemistry. "We wanted to know how active the new enzymes would be compared to the wild type."


Industrial processes use enzymes when reactions are too slow or too expensive to carry out without a catalytic boost. The most familiar use of enzymes is in laundry detergents where dirt-removing enzymes can gobble up stains even in cold water.

" It is hard to create an enzyme that is better than what occurs in nature," says Horswill. "But the FamClash approach will aid in engineering enzymes to work better in unnatural conditions, such as low or high temperatures, basic or acidic environments or organic solvents."

Horswill and Stephen J. Benkovic, the University professor, the Evan Pugh Professor of Chemistry and holder of the Eberly Chair in Chemistry, used enzymes from Escherichia coli and Bacillus subtilis, two common bacteria. Both produce forms of dihydrofolate reductases or DHFR that are 44 percent identical at the protein level. ITCHY or incremental truncation for the creation of hybrid enzymes was used to splice these DHFR enzymes together. Libraries of new and potentially interesting enzymes were created, but these new proteins do not necessarily have any enzymatic activity and therefore many of them were tested in the laboratory for activity. Working on the computer, rather than in the laboratory, Manish C. Saraf, graduate student in chemical engineering and Costas D. Maranas, associate professor of chemical engineering developed FamClash to understand and predict which combinations of pieces from the original enzymes would cause clashes and diminish activity and which will form active hybrid enzymes.

"First we have the computer program generate all the hybrids that could form using ITCHY," says Saraf. "Then we look at every residue combination in each hybrid for pair clashes."

To function properly, protein strands need to fold in a specific way so that certain domains are next to or aligned with other domains. Both forms of enzymes studies here have similar structure and function, however, clashes occur in hybrids when they retain fragments from original enzymes that are not compatible with each other.

"Pairs of residues that are too big, or too small, or have the wrong electrical charge can cause these clashes that prevent these hybrids from folding correctly," says Saraf. "We hypothesize that the greater the number of clashes that exist in the hybrids, the less likely it is to fold correctly and therefore lower activity will be present."

The hybrid combinations are then ranked for predicted enzyme activity based on the number of clashes present. "It is very helpful to experimentalists to know where introduced crossovers will produce high activity," says Horswill. "The long-term goal is to engineer enzymes for specific functions."

This engineering might come about by altering the residues so that clashes no longer exist. At this point, the researchers consider all clashes equal in reducing activity, but this is not necessarily true. Some clashes may be much more damaging than others.

"Now we assume that more clashes are worse, but we do not really know that," says Saraf. "We want to see what happens if we eliminate all clashes. Will it have equal activity? We are hoping that will tell us which predictions are right and which are wrong. "

The researchers have also tried the approach on other enzyme systems and observed similar trends in prediction.


The National Science Foundation and the National Institutes of Health supported this research.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>