Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution caught in the act

20.02.2004


An experiment which forced E. coli bacteria to adapt or perish showed that, in a pinch, they were capable of improvising a novel molecular tool to save their skins.

"The bacteria reached for a tool that they had, and made it do something it doesn’t normally do," said James Bardwell, an associate professor of molecular, cellular and developmental biology at the University of Michigan. "We caught evolution in the act of making a big step."

This big step also turns out to be a new way of making molecular bolts called disulfide bonds, which are of particular interest to the biotechnology industry. Disulfide bonds are stiffening struts in proteins that also help the proteins fold into their proper, functional, three-dimensional shapes.



In a paper published Feb. 20 in the journal Science, a joint research team at the University of Michigan and the University of Texas describes how a resourceful bacterium was able to develop an entirely new way to make disulfide bonds. This restarted its motor and enabled it to move toward food before it starved to death.

The laboratory of George Georgiou, a professor of chemical and biomedical engineering at UT Austin, used a strain of mutant bacteria developed by Bardwell that had lost their ability to make disulfide bonds. These disulfides are critical for the ability of the bacteria’s propeller-like swimming motor, the flagellum, to work. The researchers then put these non-swimming bugs to the test by placing them on a dish of food where, once they had exhausted the food they could reach, they either had to repair that broken motor or starve to death on the spot.

The bacteria used in the experiment were forced to use a protein called thioredoxin---which normally destroys disulfide bonds---to make the bonds instead. In a process similar to natural selection, UT graduate student Lluis Masip made random alterations in the DNA encoding thioredoxin and then subjected thousands of bacteria to the swim-or-starve test. He wanted to see if an altered version of thioredoxin could be coerced to make disulfides for other proteins in the bacteria.

To the researchers’ surprise, a mutant carrying only two amino acid changes, amounting to less than 2 percent of the total number of amino acids in thioredoxin, restored the ability of the bacteria to move. The altered thioredoxin was able to carry out disulfide bond formation in numerous other bacterial proteins all by itself, without relying on any of the components of the natural disulfide bond pathway. The mutant bug managed to solve the problem in time and swim away from starvation and multiply.

When Bardwell heard Georgiou discuss the experiment at a scientific meeting in France in spring 2002, he asked if they could collaborate on figuring out what, precisely, the successful bacterium had managed to accomplish.

With post-doctoral fellow Jean Francois Collet, Bardwell’s team found that the two amino acid substitutions in thioredoxin cause a remarkable transformation: they result in the binding of two iron and two sulfur atoms that form a complex that bridges two thioredoxin protein molecules. This iron-sulfur cluster was shown to be necessary for the new enzyme to form disulfides. Iron-sulfur complexes occur in many enzymes, but never before had such a functional iron-sulfur complex been introduced into a protein as a result of laboratory evolution. James Penner-Hahn, a professor of chemistry and chair of the Biophysics Research Division at U-M, showed exactly what kind of iron-sulfur cluster was involved.

Bardwell likens the new pathway for disulfide bond formation to engineering. "People often speak of Computer Assisted Design (CAD), where you try things out on a computer screen before you manufacture them. We put the bacteria we were working on under a strong genetic selection, like what can happen in evolution, and the bacteria came up with a completely new answer to the problem of how to form disulfide bonds. I think we can now talk about Genetic Assisted Design (GAD).

"The naturally occurring enzymes involved in disulfide bond formation are a biological pathway whose main features are the same from bacteria to man," Bardwell said. "Understanding how disulfide bond formation occurs and figuring out new ways to make it happen could be important to numerous disease states, like Alzheimer’s and cystic fibrosis, that result from defective protein folding. "

Disulfides are also vital for the activity of most proteins that are injected into people for medical purposes, such as insulin and TPA, a blood clot dissolver that is injected into people who are having heart attacks and strokes.

Karl Leif Bates | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo

More articles from Life Sciences:

nachricht Insights into the origin of life: how the first protocells divided
19.02.2020 | Universität Augsburg

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Time-resolved measurement in a memory device

19.02.2020 | Physics and Astronomy

Mixed-signal hardware security thwarts powerful electromagnetic attacks

19.02.2020 | Information Technology

Could water solve the renewable energy storage challenge?

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>