Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBL researchers discover key molecular “switch” in eye development of medaka fish

19.02.2004


Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have discovered a molecular “switch” that guides the development of the eye in a fish called medaka. The interaction of two proteins determines whether cells divide or specialize at a key moment as the eye forms. Researchers are keenly interested in such switches because the decision to replicate or differentiate is crucial to many processes, from the proper growth of embryos to the development of cancer. The story appears in this week’s edition of Nature (February 19, 2004).



“The discovery of this novel protein-protein connection is a major step forward in understanding a basic biological process such as the tight control and delicate balance between cell proliferation and cell differentiation,” notes PhD student Filippo Del Bene.

At any one time, the body’s cells choose between one of two paths: either divide to produce exact copies of themselves (called “proliferation”) or to take on very specialized shapes and functions such as liver, brain or retinal cells (called “differentiation”). Building a fish – or a human – involves perfect timing in switching back and forth between the two processes. If cells specialize too early, organs won’t grow. If tissue continues to divide after it has specialized, tumors may form.


Group Leader Jochen Wittbrodt and PhD student Filippo Del Bene were studying a protein called SIX3, produced by cells that will form the head in medaka embryos. SIX3 helps cells develop into the retina and part of the brain. “This protein is so powerful that if a cell produces it at the wrong stage of development, a retina will form – even if it’s in the wrong place in the body,” Wittbrodt says.

Del Bene discovered that SIX3 can clamp onto another protein called GEMININ, known to researchers for its role in cell division. “If GEMININ is around, cells don’t divide," Del Bene says. "It prevents them from copying their DNA, necessary for cell division.”

When GEMININ is active at the wrong time, it disrupts cell division, making retinal cells specialize too early. Del Bene and Wittbrodt showed that when SIX3 locks onto it, GEMININ is unable to stop division, and the tissue grows to its proper size. When the cells have reached their normal size, GEMININ needs to unlock itself from SIX3 to become active again, so that tissues don’t become too large. Building the eye requires subtly shifting between amounts of these two proteins at the right times.

“This process of switching back and forth is necessary in the tissues of all organisms," Wittbrodt says. "It’s fascinating to find that just two molecules play a fundamental role in the medaka eye. There may be similar switches in other tissues and other organisms. This gives us a good place to start looking.”

Trista Dawson | alfa
Further information:
http://www.embl-heidelberg.de/ExternalInfo/oipa/pr2004/pr190204.pdf

More articles from Life Sciences:

nachricht TU Bergakademie Freiberg researches virus inhibitors from the sea
27.03.2020 | Technische Universität Bergakademie Freiberg

nachricht The Venus flytrap effect: new study shows progress in immune proteins research
27.03.2020 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>