Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EMBL researchers discover key molecular “switch” in eye development of medaka fish

19.02.2004


Researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg have discovered a molecular “switch” that guides the development of the eye in a fish called medaka. The interaction of two proteins determines whether cells divide or specialize at a key moment as the eye forms. Researchers are keenly interested in such switches because the decision to replicate or differentiate is crucial to many processes, from the proper growth of embryos to the development of cancer. The story appears in this week’s edition of Nature (February 19, 2004).



“The discovery of this novel protein-protein connection is a major step forward in understanding a basic biological process such as the tight control and delicate balance between cell proliferation and cell differentiation,” notes PhD student Filippo Del Bene.

At any one time, the body’s cells choose between one of two paths: either divide to produce exact copies of themselves (called “proliferation”) or to take on very specialized shapes and functions such as liver, brain or retinal cells (called “differentiation”). Building a fish – or a human – involves perfect timing in switching back and forth between the two processes. If cells specialize too early, organs won’t grow. If tissue continues to divide after it has specialized, tumors may form.


Group Leader Jochen Wittbrodt and PhD student Filippo Del Bene were studying a protein called SIX3, produced by cells that will form the head in medaka embryos. SIX3 helps cells develop into the retina and part of the brain. “This protein is so powerful that if a cell produces it at the wrong stage of development, a retina will form – even if it’s in the wrong place in the body,” Wittbrodt says.

Del Bene discovered that SIX3 can clamp onto another protein called GEMININ, known to researchers for its role in cell division. “If GEMININ is around, cells don’t divide," Del Bene says. "It prevents them from copying their DNA, necessary for cell division.”

When GEMININ is active at the wrong time, it disrupts cell division, making retinal cells specialize too early. Del Bene and Wittbrodt showed that when SIX3 locks onto it, GEMININ is unable to stop division, and the tissue grows to its proper size. When the cells have reached their normal size, GEMININ needs to unlock itself from SIX3 to become active again, so that tissues don’t become too large. Building the eye requires subtly shifting between amounts of these two proteins at the right times.

“This process of switching back and forth is necessary in the tissues of all organisms," Wittbrodt says. "It’s fascinating to find that just two molecules play a fundamental role in the medaka eye. There may be similar switches in other tissues and other organisms. This gives us a good place to start looking.”

Trista Dawson | alfa
Further information:
http://www.embl-heidelberg.de/ExternalInfo/oipa/pr2004/pr190204.pdf

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>