Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for converting nitrogen to ammonia

18.02.2004


A research team at Cornell University has succeeded in converting nitrogen into ammonia using a long-predicted process that has challenged scientists for decades.



The achievement involves using a zirconium metal complex to add hydrogen atoms to the nitrogen molecule and convert it to ammonia, without the need for high temperatures or high pressure.

"The value of our work is that we have answered the very basic chemical question of how to take this very inert and unreactive [nitrogen] molecule and get it to a useful form," says Paul Chirik, Cornell assistant professor of chemistry and chemical biology.


Chirik and his two colleagues reported on the advance in a recent issue of the journal Nature (Vol. 427, Feb. 5, 2004). The research team included Chirik’s former graduate student Jaime Pool and research assistant Emil Lobkovsky.

In an accompanying "News and Views" in Nature , Michael Fryzuk of the University of British Columbia notes that "a remarkable chemical transformation has been discovered that is likely to have important implications for the production of ammonia." However, Chirik emphasizes that his research group has succeeded only in producing ammonia in a laboratory setting, molecule by molecule, and is not making claims for an industrial process.

Nitrogen makes up 78 percent of the Earth’s atmosphere and, thanks to a 90-year-old industrial process, it can be converted to ammonia-based fertilizer that sustains about 40 percent of the world’s population, according to Fryzuk.

The problem with converting nitrogen into a usable, industrial form is that, although the element is a simple molecule, it is held together by an incredibly strong bond between two atoms. Indeed only carbon monoxide has a stronger bond. But while carbon monoxide easily adheres to other molecules, nitrogen is non-polar and does not attach easily to metals. It also is hard to put electrons into nitrogen molecules, and hard to take them out. The industrial method for converting nitrogen to ammonia, the Haber-Bosch process (after Fritz Haber and Carl Bosch, both Nobel laureates), produces more than 100 million tons

of ammonia annually for the chemical industry and agriculture. The process requires high temperatures and pressure in order for nitrogen and hydrogen to interact over an iron surface, which serves as a catalyst.

The Chirik team, however, was able to break the nitrogen molecule’s atomic bond, using zirconium in a soluble form, at just 45 degrees Celsius (113 degrees Fahrenheit) and add hydrogen atoms to this so-called "dinitrogen bridge." Complete fixation to ammonia was achieved at 85 degrees Celsius (185 degrees Fahrenheit).

However, Chirik emphasizes that "the chance that anyone will ever replace the Haber-Bosch process is very small." His group’s discovery could, he believes, be useful in making "value-added nitrogen chemicals, such as hydrazines for rocket fuels or fine chemicals for drug synthesis or dyes.

Fryzuk notes that it has taken so long to achieve the Chirik group’s transformation of nitrogen because, he says, molecular nitrogen "is so chemically inert that even binding it to metal complexes in solution … was a decades-long challenge for inorganic chemists."

Unlike the Haber-Bosch process, the Chirik group’s transformation of nitrogen does not use a catalyst. Instead the zirconium makes only one ammonia molecule at a time, not vast numbers as in an industrial process, and, as Fryzuk notes, "there is no known homogenous catalyst that can effect this simple process" at low temperatures and pressure. (Instead of acting as a catalyst, the zirconium forms a new complex in which hydrogen atoms are added to the dinitrogen bridge, ultimately forming ammonia.)

Chirik says his group is currently searching for such a catalyst, which would be patentable. "Maybe we can come up with catalytic cycles that don’t make ammonia but make other nitrogen compounds. Arguably that would be more important than making ammonia," he says.

The title of the Nature article is "Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex." The research was funded by the National Science Foundation.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/Chirik.nitrogen1.deb.html

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>