Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical that turns mouse stem cells into heart muscles discovered by Scripps researchers

18.02.2004


A group of researchers from The Skaggs Institute for Chemical Biology at The Scripps Research Institute and from the Genomics Institute of the Novartis Research Foundation (GNF) has identified a small synthetic molecule that can control the fate of embryonic stem cells.



This compound, called cardiogenol C, causes mouse embryonic stem cells to selectively differentiate into "cardiomyocytes," or heart muscle cells, an important step on the road to developing new therapies for repairing damaged heart tissue.

Normally, cells develop along a pathway of increasing specialization. In humans and other mammals, these developmental events are controlled by mechanisms and signaling pathways we are only beginning to understand. One of scientists’ great challenges is to find ways to selectively differentiate stem cells into specific cell types.


"It’s hard to control which specific lineage the stem cells differentiate into," says Xu Wu, who is a doctoral candidate in the Kellogg School of Science and Technology at Scripps Research. "We have discovered small molecules that can [turn] embryonic stem cells into heart muscle cells."

Wu is the first author of the study to be published in an upcoming issue of the Journal of the American Chemical Society and which was conducted under the direction of Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of the Skaggs Institute for Chemical Biology at The Scripps Research Institute, and Sheng Ding, Ph.D, who is an assistant professor in the Department of Chemistry at Scripps Research.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types -- potentially providing cells that have been permanently lost by a patient. For instance, neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. And Type I diabetes -- in which beta cells are lost -- might be treated by generating new beta cells.

Likewise, a damaged heart, which is composed mainly of cardiac muscle cells that the body may be unable to replace once lost, could potentially be repaired with new muscle cells derived from stem cells.

Scripps Research scientists reasoned that if stem cells were exposed to certain synthetic chemicals, they might selectively differentiate into particular types of cells. In order to test this hypothesis, the scientists screened some 100,000 small molecules from a combinatorial small molecule library that they synthesized. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Wu, Ding, and Schultz designed a method to identify molecules able to differentiate the mouse embryonic stem cells into heart muscle cells. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in cardiomyocytes. Then they placed these EC cells into separate wells and added different chemicals from the library to each. Any engineered EC cells induced to become heart muscle cells expressed luciferase. This made the well glow, distinguishing it from tens of thousands of other wells when examined with state-of-the-art high-throughput screening equipment. These candidates were confirmed using more rigorous assays.

In the end, Wu, Ding, Schultz, and their colleagues found a number of molecules that were able to induce the differentiation of EC cells into cardiomyocytes, and they chose one, called Cardiogenol C, for further studies. Cardiogenol C proved to be effective at directing embryonic stem cells into cardiomyocytes. Using Cardiogenol C, the scientists report that they could selectively induce more than half of the stem cells in their tests to differentiate into cardiac muscle cells. Existing methods for making heart muscle cells from embryonic stem cells are reported to result in merely five percent of the stem cells becoming the desired cell type.

Now Wu, Ding, Schultz, and their colleagues are working on understanding the exact biochemical mechanism whereby Cardiogenol C causes the stem cells to differentiate into cardiomyocytes, as well as attempting to improve the efficiency of the process.

The article, "Small Molecules that Induce Cardiomyogenesis in Embryonic Stem Cells" was authored by Xu Wu, Sheng Ding, Qiang Ding, Nathanael S. Gray, and Peter G. Schultz and is available to online subscribers of the Journal of the American Chemical Society at: http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html. The article will also be published in an upcoming issue of the Journal of the American Chemical Society.


This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | EurekAlert!
Further information:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html

More articles from Life Sciences:

nachricht NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish
24.02.2020 | National University of Ireland Galway

nachricht Shaping the rings of molecules
24.02.2020 | University of Montreal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>