Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical that turns mouse stem cells into heart muscles discovered by Scripps researchers

18.02.2004


A group of researchers from The Skaggs Institute for Chemical Biology at The Scripps Research Institute and from the Genomics Institute of the Novartis Research Foundation (GNF) has identified a small synthetic molecule that can control the fate of embryonic stem cells.



This compound, called cardiogenol C, causes mouse embryonic stem cells to selectively differentiate into "cardiomyocytes," or heart muscle cells, an important step on the road to developing new therapies for repairing damaged heart tissue.

Normally, cells develop along a pathway of increasing specialization. In humans and other mammals, these developmental events are controlled by mechanisms and signaling pathways we are only beginning to understand. One of scientists’ great challenges is to find ways to selectively differentiate stem cells into specific cell types.


"It’s hard to control which specific lineage the stem cells differentiate into," says Xu Wu, who is a doctoral candidate in the Kellogg School of Science and Technology at Scripps Research. "We have discovered small molecules that can [turn] embryonic stem cells into heart muscle cells."

Wu is the first author of the study to be published in an upcoming issue of the Journal of the American Chemical Society and which was conducted under the direction of Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of the Skaggs Institute for Chemical Biology at The Scripps Research Institute, and Sheng Ding, Ph.D, who is an assistant professor in the Department of Chemistry at Scripps Research.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types -- potentially providing cells that have been permanently lost by a patient. For instance, neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. And Type I diabetes -- in which beta cells are lost -- might be treated by generating new beta cells.

Likewise, a damaged heart, which is composed mainly of cardiac muscle cells that the body may be unable to replace once lost, could potentially be repaired with new muscle cells derived from stem cells.

Scripps Research scientists reasoned that if stem cells were exposed to certain synthetic chemicals, they might selectively differentiate into particular types of cells. In order to test this hypothesis, the scientists screened some 100,000 small molecules from a combinatorial small molecule library that they synthesized. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Wu, Ding, and Schultz designed a method to identify molecules able to differentiate the mouse embryonic stem cells into heart muscle cells. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in cardiomyocytes. Then they placed these EC cells into separate wells and added different chemicals from the library to each. Any engineered EC cells induced to become heart muscle cells expressed luciferase. This made the well glow, distinguishing it from tens of thousands of other wells when examined with state-of-the-art high-throughput screening equipment. These candidates were confirmed using more rigorous assays.

In the end, Wu, Ding, Schultz, and their colleagues found a number of molecules that were able to induce the differentiation of EC cells into cardiomyocytes, and they chose one, called Cardiogenol C, for further studies. Cardiogenol C proved to be effective at directing embryonic stem cells into cardiomyocytes. Using Cardiogenol C, the scientists report that they could selectively induce more than half of the stem cells in their tests to differentiate into cardiac muscle cells. Existing methods for making heart muscle cells from embryonic stem cells are reported to result in merely five percent of the stem cells becoming the desired cell type.

Now Wu, Ding, Schultz, and their colleagues are working on understanding the exact biochemical mechanism whereby Cardiogenol C causes the stem cells to differentiate into cardiomyocytes, as well as attempting to improve the efficiency of the process.

The article, "Small Molecules that Induce Cardiomyogenesis in Embryonic Stem Cells" was authored by Xu Wu, Sheng Ding, Qiang Ding, Nathanael S. Gray, and Peter G. Schultz and is available to online subscribers of the Journal of the American Chemical Society at: http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html. The article will also be published in an upcoming issue of the Journal of the American Chemical Society.


This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | EurekAlert!
Further information:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/abs/ja038950i.html

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>