Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice Cloned from Olfactory Cells

16.02.2004


Researchers have successfully cloned a mouse using mature olfactory neurons as the genetic donor. The scientists credit the idea for the experiments to Woody Allen whose classic comedy Sleeper depicted scientists who try to clone a dead dictator from his nose.


The images are of a newborn mouse cloned from an olfactory sensory neuron that had been marked with a genetic change so that it would be green under fluorescent light. Here you see on the right, a green cloned pup and in the upper left a normal non-green newborn mouse for comparison.



The current study aims to answer longstanding questions about the developmental potential of mature cells. In doing their experiments, the researchers were seeking to determine whether a single mature olfactory neuron, when introduced into an egg, or oocyte, depleted of its nucleus, could revert to an undifferentiated state in which it could give rise to an adult mouse possessing the full range of olfactory receptors.

Indeed, the resulting mice exhibited an array of well organized odorant receptors that were indistinguishable from those of normal mice, the researchers reported on February 15, 2004, in an article published in an advance online publication in the journal Nature. The research was performed in the laboratories of Rudolf Jaenisch at the Whitehead Institute for Biomedical Research at MIT, and Richard Axel, a Howard Hughes Medical Institute investigator at Columbia University. Co-lead authors on the paper were Kevin Eggan in Jaenisch’s laboratory and Kristin Baldwin in Axel’s laboratory.


“Our study demonstrates for the first time that animals can be derived from the nucleus of mature neurons following transfer into the oocyte. Because the cloned animals are normal, our experiment also shows that [some] brain functions do not involve genetic alterations of the neuron’s genome,” said Jaenisch.

According to the researchers, previous cloning efforts had failed to clone animals from the nuclei of any mature “post-mitotic” cells such as neurons - that is, those that had ceased dividing to produce new cells.

A central question, said the scientists, was whether mature cells had undergone certain irreversible genetic processes, such as gene rearrangements, that would prevent them from reprogramming their nuclei to allow totipotent development. These processes might interfere with the cell’s ability to become totipotent, a property of certain stem cells that permits them to differentiate into any cell type

The researchers chose olfactory neurons as the source of genetic material because previous research had suggested that these cells might undergo gene rearrangements during development. Whatever the underlying process involved in generating their spectacular diversity, olfactory neurons are distinguished by their ability to randomly express any one of some 1,500 diverse odor receptor genes. Such genes give rise to the protein receptors on the surface of the neurons that detect specific chemical odorants.

In their efforts, the researchers in Axel’s laboratory generated mice with olfactory sensory neurons tagged using genetic marker molecules. Using standard cloning techniques, the researchers in Jaenisch’s laboratory then isolated individual neurons, removed nuclei from the tagged cells and introduced the nuclei into mouse eggs from which the nuclei had been removed. When these eggs were introduced into surrogate mother mice, the resulting offspring proved viable and fertile. Furthermore, they exhibited the normal pattern of odorant-receptor gene expression and organization of odorant receptor genes.

According to Axel, the cloning achievement eliminates one potential mechanism and narrows the possible ways in which a cell chooses one of thousands of receptor genes. The findings also demonstrate that the developmental changes are reversible.

Axel said that the cloning technique should be broadly applicable. “From a mechanistic point of view, it’s very important to be able to investigate whether irreversible changes in the DNA accompany development, differentiation and maturation,” he said. “This approach, although technologically demanding, affords an opportunity to detect those changes that are irreversible in virtually all cells.”

Axel emphasized that their experiments had no application to the newly announced achievement by South Korean scientists in cloning human embryos. “Our experiments were performed largely to address problems in neuronal diversity,” he said.

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/axel3.html

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>