Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system’s attack dogs kept on genetic leash

13.02.2004


Loss of restraint may contribute to lupus, other autoimmune disorders



When they’re not busy battling invaders, some of the cells that act as the attack dogs of the mouse immune system have to be kept on a genetic leash to prevent them from mounting inappropriate attacks on the mouse’s own tissues, researchers from Washington University School of Medicine in St. Louis have found.

The findings, reported in this week’s issue of Science, are the first scientific proof of a theory that could open up a significant new front in the battle to control autoimmune diseases like lupus, multiple sclerosis and diabetes.


"We used to think of mature immune cells like T cells and B cells as metabolically inactive when waiting for infections or other signals that trigger an attack," says Stanford Peng, M.D., Ph.D., assistant professor of internal medicine and of pathology and immunology. "We’re now thinking these resting cells actually are very metabolically active, and they are kept in a quiescent state by genes actively working to shut down activating proteins."

In the new study, Peng and colleagues showed for the first time that a gene, Foxj1, helps keep immune attack cells inactive. If malfunctions in this gene and others contribute to human autoimmune diseases, researchers may be able to develop new treatments that restore the genes’ functions and ease patients’ symptoms.

"Our efforts to develop new treatments have been focused on pathological targets in autoimmune diseases -- genes that are overused or are used inappropriately, leading to immune system attacks on self," Peng explains. "Another concept we should keep in mind is that the loss of one of these regulatory genes that keep the immune system in check also may be a primary contributing factor."

Peng notes, though, that errors in regulatory genes are unlikely to be the sole cause of a particular autoimmune disorder.

"You probably need multiple malfunctions in different genes to cause a severe autoimmune syndrome," he explains.

The Lupus Foundation of America estimates about 1.5 million Americans have lupus, which can cause arthritis, prolonged fatigue, skin rashes, kidney damage, anemia and breathing pain.

Many key symptoms of human lupus spontaneously appeared in lines of mice being bred for other purposes by various scientists in the 1960s and 1970s. Peng and colleagues compared the activity levels of different genes in cells from normal mice and from the mice that develop lupus. They measured how often cells used the genes to make messenger RNA, which is like an order slip for production of a copy of the gene’s protein.

"Although Foxj1 had never previously been shown to have an immune system role, cells of the mice with lupus were clearly making less RNA from this gene, and this is typically reflective of reduced activity on the part of the gene’s protein," Peng says.

When Peng’s group disabled the gene in the immune systems of normal mice, they developed a lupus-like syndrome, with inflammation in the salivary glands, lungs, kidneys and several other organs.

The protein made from the gene already was known to be a transcription factor -- a protein that promotes or suppresses the creation of proteins made from other genes. Peng found that lack of the Foxj1 protein increased activity of another transcription factor, NF-B.

"This protein belongs to a family of transcription factors heavily implicated in various types of inflammation," Peng says. "So our thinking is that without the protein, more NF-B is activated, possibly triggering the inappropriate activation of immune cells."

Peng speculates that other Fox gene family members may play an intrinsic role in keeping immune cells quiet or in preparing them to battle invaders.

"There’s not a lot known yet about the family of Fox genes," Peng says. "One member, Foxp3, has been linked to the development of regulatory T cells that suppress the activation of other immune cells. But that’s an external limit on cell activation. Foxj1 is the first gene to limit activity instrinsically, or from within the cell itself."

Peng continues to investigate the basic biochemistry of the gene, which also has been identified in humans. He hopes to look for signs of malfunction in the gene in humans with lupus and other autoimmune disorders.

"This may be relevant to other diseases beyond lupus," Peng says. "In diabetes, for example, it’s known that T cells, one of the cell types affected by this gene, attack the pancreas. In multiple sclerosis, T cells appear to attack the brain. So this gene may have a much more general role to play."


Lin L, Spoor MS, Gerth AJ, Brody SL, Peng SL. Modulation of Th1 activation and inflammation by the NF-B repressor Foxj1. Science, Feb. 13, 2004.

Funding from the Lupus Research Institute, the Arthritis Foundation, the National Institutes of Health, the Siteman Cancer Center, the Diabetes Research and Training Center and the Digestive Diseases Research Core Center of the Washington University School of Medicine supported this research.

Michael C. Purdy | WUSTL
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/48AC43D9D7D4AC4486256E370075894A?OpenDocument

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>