Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team discovers memory mechanism

06.02.2004


MIT neuroscientists have discovered a new brain mechanism controlling the formation of lasting memories. This mechanism explains how signals between neurons stimulate production of the protein building blocks needed for long-term memory storage.



The study, which will appear in the Feb. 6 issue of the journal Cell, has broad implications for our understanding of how learning and memory normally occur, and how these abilities may be undermined in psychiatric and neurologic diseases.

Long-lasting memories are stored in the brain through strengthening of the connections, or synapses, between neurons. Researchers have known for many years that neurons must turn on the synthesis of new proteins for long-term memory storage and synaptic strengthening to occur, but the mechanisms by which neurons accomplish these tasks have remained elusive.


The MIT research team, led by Nobel laureate Susumu Tonegawa, director of the Picower Center for Learning and Memory, has now identified a crucial molecular pathway that allows neurons to boost their production of new proteins rapidly during long-term memory formation and synaptic strengthening.

"What we have discovered that hasn’t been established before is that there is a direct activational signal from the synapse to the protein synthesis machinery," said Tonegawa, the Picower Professor of Biology and Neuroscience MIT’s Departments of Brain and Cognitive Sciences and Biology. The central component of this pathway, an enzyme called "mitogen-activated protein kinase" (MAPK), effectively provides a molecular switch that triggers long-term memory storage by mobilizing the protein synthesis machinery.

Acting on a hunch that MAPK might be an important part of such a "memory switch," Ray Kelleher, a postdoctoral fellow in Tonegawa’s laboratory and lead author of the study, created mutant mice in which the function of MAPK was selectively inactivated in the adult brain. Intriguingly, he found that these mutant mice were deficient in long-term memory storage. In contrast to normal mice’s ability to remember a behavioral task for weeks, the mutant mice could remember the task for only a few hours. Similarly, the researchers found that synaptic strengthening was also much more short-lived in neurons from the mutant mice than in neurons from normal mice.

Realizing that the pattern of impairments in mutant mice suggested a problem with the production of new proteins, the researchers then performed an elegant series of experiments that revealed precisely how MAPK translates synaptic stimulation into increased protein synthesis. Based on molecular comparisons of neurons from normal and mutant mice, they found that synaptic stimulation normally activates MAPK, and the activated form of MAPK in turn activates several key components of the protein synthesis machinery. This direct regulation of the protein synthesis machinery helps explain the observation that activation of MAPK enhanced the production of a broad range of neuronal proteins.

"Many people had thought that long-term memory formation involved only boosting the synthesis of a very limited set of proteins," said Tonegawa. "But to our surprise, this process involves ’up-regulating’ the synthesis of a very large number of proteins."

An immediate question that Tonegawa and colleagues are pursuing is how neurons target the newly synthesized proteins to the specific synapses participating in memory formation while not modifying other synapses.

In addition to Tonegawa and Kelleher, the study’s other authors (all in Tonegawa’s lab) are graduate student Arvind Govindarajan and postdoctoral fellows Hae-Yoon Jung and Hyejin Kang.

Potential clinical impact

About the potential clinical impact of the study, Tonegawa observed, "As we continue to map out the molecular and cellular mechanisms of cognitive function, we will better understand the basis of disorders of memory impairment. Improved understanding makes it far more likely that we can develop drugs for specific molecular targets."

Defects in the strengthening and growth of synaptic connections are associated with a variety of psychiatric and neurologic conditions affecting the developing and adult brain, raising the possibility that disturbances in the mechanism identified in this study may contribute to these disorders, said Tonegawa. The next step will be to determine whether abnormalities in the regulation of protein synthesis can be identified in the affected brain regions in specific neuropsychiatric disorders.


###
The study was supported by the National Institutes of Health, the Howard Hughes Medical Institute and the RIKEN Brain Science Institute.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/nr/2004/memory.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>