Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings could aid efforts to harness nature for making drugs

29.01.2004


Chemical engineers at Purdue University have shown how to make yeast cells double the activity and boost productivity of a type of enzyme plants need to create important chemicals such as anticancer compounds.

The work is related to efforts aimed at developing techniques to use plants and microorganisms as natural factories for producing pharmaceuticals. Such techniques would be safer and more environmentally friendly than conventional methods for making drugs, which often require hazardous chemicals and steel "reactors" operated at high pressures and temperatures. The enzymes from plants and other organisms typically function in water near room temperature under ordinary pressure.

The Purdue researchers demonstrated that altering the nutrients and carefully controlling fermentation time caused yeast cultures to produce an enzyme called ferulate 5-hydroxylase that has twice its normal rate of activity, which increases the enzyme’s productivity.



"Activity relates to the amount of product that can be synthesized in a given time," said John Morgan, an assistant professor of chemical engineering at Purdue. "So we could make more than twice the amount of product per hour."

Findings are detailed in a paper appearing in the Jan. 20 issue of the journal Biotechnology and Bioengineering, published by John Wiley & Sons Inc. The paper was written by Morgan and Purdue doctoral student Hanxiao Jiang.

The enzyme is a member of a family of enzymes called cytochrome P450, which plants need to produce numerous chemical compounds.

Plants ordinarily produce small quantities of "flavonoids," which are beneficial chemicals known as antioxidants. So researchers are developing ways to boost production of the chemicals by transferring vital enzymes from plants to microorganisms. Because P450 enzymes are "biocatalysts" that enable an organism to produce the beneficial drugs, researchers are trying to develop techniques that cause plants to make greater quantities of the enzymes and enzymes that are more productive.

The method pursued by the Purdue researchers was to focus on a gene responsible for producing ferulate 5-hydroxylase.

Altering the composition of nutrients fed to the yeast cultures and controlling the fermentation time caused the gene to be "expressed," producing 45 percent more of the enzyme while doubling the enzyme’s activity.

Increasing the quantity and activity of various cytochrome P450 enzymes might enable scientists to use plants and microorganisms like E. coli and baker’s yeast to one day commercially produce pharmaceuticals. More progress is needed, however, before it will be practical to use plants and plant enzymes in microorganisms as natural pharmaceutical factories, Morgan said.

"I wouldn’t consider this a major breakthrough, but it does represent significant progress in improving the expression of the enzyme," he said. "I think there is certainly room for greater expression of these P450 enzymes."

The same technique could be used to increase the production of other P450 enzymes, Morgan said.

"The plant kingdom contains a large and relatively untapped diversity of P450s that are needed to create thousands of valuable natural products," he said.

In ongoing work, the Purdue researchers also are trying to develop methods for coaxing the enzymes to make drugs not normally produced by plants.

"We are feeding them what’s known as substrate analogs, or compounds that are structurally similar to the compound that this enzyme will normally recognize and react with but are somewhat structurally different," Morgan said. "Therefore, if the enzyme recognizes this compound, it will produce a novel product, or a product that’s never been synthesized before.

"From a scientific standpoint, we want to better understand precisely how organisms make certain compounds, and from an engineering standpoint, we want to devise a strategy for manipulating the organism so that it makes the chemicals we want it to make."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: John Morgan, (765) 494-4088, jamorgan@ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040128.Morgan.enzyme.html

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>