Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers discover new activity in cystic fibrosis protein

28.01.2004


Even well-studied proteins can reveal surprises. University of Iowa scientists have discovered a new enzyme activity for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is the protein that is defective in cystic fibrosis, a common life-threatening genetic disease that affects primarily the lungs and pancreas of young people. The discovery, which appeared in the Dec. 26, 2003 issue of Cell, helps solve a long-standing puzzle about how this important protein works.



CFTR forms a channel, or pore, in the membrane of airway cells. When the channel is open, the salt chloride flows through it from one side of the membrane to the other. It has been known for many years that CFTR channel opening requires a molecule called ATP and that CFTR has an enzymatic activity called ATPase that uses ATP. ATP is the energy currency of the cell and the ATPase reaction spends the energy of ATP to power enzyme activity. Because chloride flows passively through the CFTR channel, it has long seemed puzzling that the opening of CFTR would require the substantial energy of ATP. Moreover, energy from ATP is not required to fuel any other ion channel.

The UI study now reveals that CFTR can function as an adenylate kinase enzyme. Like an ATPase, the adenylate kinase reaction uses ATP. But in contrast to an ATPase, an adenylate kinase enzyme also uses a related molecule called AMP. Importantly, the adenylate kinase neither consumes nor produces energy, but it controls channel opening. The study also suggests that in normal cells it is this enzyme activity rather than the ATPase that opens the CFTR channel.


"We think that in the normal physiologic context where AMP is present, CFTR would function as an adenylate kinase," said Christoph Randak, M.D., UI postdoctoral scholar in the UI Department of Internal Medicine and lead author of the study. "Thus, the CFTR channel may function without consuming a large amount of energy."

The UI study may also have broad implications beyond CFTR. CFTR is a member of the ABC transporter family, the largest group of proteins that move molecules across membranes. These proteins exist in all forms of life and they transfer a very diverse group of molecules across membranes.

ABC transporters are involved in many genetic diseases, and they are significant targets for therapeutics. Therefore, it will now be important to investigate whether other ABC transporters are also adenylate kinases. If they are, the adenylate kinase activity could provide a novel way to modulate their actions.

"ABC transporter proteins contain a very conserved ’engine’ that controls transport," Randak said. "Our study indicates that at least in CFTR that ’engine’ can be run either by an ATPase, which uses energy, or an adenylate kinase, which is energy-neutral."

Randak’s co-author for the study was Michael J. Welsh, M.D., Howard Hughes Medical Institute (HHMI) Investigator, and the Roy J. Carver Chair of Biomedical Research in the UI Departments of Internal Medicine and Physiology and Biophysics.


The study was funded in part by grants from the National Heart, Lung and Blood Institute, one of the National Institutes of Health, and the Forschungsgemeinschaft, a German grant-awarding organization.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

STORY SOURCE: University of Iowa Health Science Relations, 5135 Westlawn, Iowa City, Iowa 52242-1178

CONTACT(S): Jennifer Brown, 319-335-9917, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>