Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists grow neurons using nanostructures

23.01.2004


Scientists at Northwestern University have designed synthetic molecules that promote neuron growth, a promising development that could lead to the reversal of paralysis due to spinal cord injury.



"We have created new materials that because of their chemical structure interact with cells of the central nervous system in ways that may help prevent the formation of the scar that is often linked to paralysis after spinal cord injury," said Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry and Medicine.

Similar to earlier experiments that promoted bone growth, the scientists now have successfully grown nerve cells using an artificial three-dimensional network of nanofibers, an important technique in regenerative medicine. The results will be published online Jan. 22 by the journal Science.


"We have shown that our scaffold selectively and rapidly directs cell differentiation, driving neural progenitor cells to become neurons and not astrocytes," said Stupp, who led the research team in Evanston. "Astrocytes are a major problem in spinal cord injury because they lead to scarring and act as a barrier to neuron repair."

The innovative scaffold is made up of nanofibers formed by peptide amphiphile molecules. The scientists’ key breakthrough was designing the peptide amphiphiles so that when they self-assembled into the scaffold a specific sequence of five amino acids known to promote neuron growth were presented in enormous density on the outer surfaces.

"This was all done by design," said Stupp, who is also director of the University’s Institute for Bioengineering and Nanoscience in Advanced Medicine. "By including a specific biological signal on the nanostructure we were able to customize the new materials for neurons."

In collaboration with the lab of John A. Kessler, Benjamin and Virginia T. Boshes Professor of Neurology at the Feinberg School of Medicine, Stupp and his team observed that when the peptide amphiphiles were placed in solution and combined with neural progenitor cells (which are present in the central nervous system and able to differentiate into different types of cells) the nanofiber scaffolds formed and led quickly to the selective differentiation of the cells into neurons.

In subsequent experiments, the researchers successfully delivered the peptide amphiphile solution, using a simple injection, to the site of a spinal cord injury in a laboratory rat. Upon contact with the tissue, the solution was transformed into a solid scaffold.

In addition to Stupp and Kessler, other authors on the Science paper are Gabriel A. Silva and Catherine Czeisler (lead authors), Krista L. Niece, Elia Beniash and Daniel Harrington, all from Northwestern University. The research was supported by the National Science Foundation, the National Institutes of Health and the U.S. Department of Energy.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Black carbon found in the Amazon River reveals recent forest burnings

20.11.2019 | Ecology, The Environment and Conservation

Outback telescope captures Milky Way center, discovers remnants of dead stars

20.11.2019 | Physics and Astronomy

The ever-changing brain: Shining a light on synaptic plasticity

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>