Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists grow neurons using nanostructures

23.01.2004


Scientists at Northwestern University have designed synthetic molecules that promote neuron growth, a promising development that could lead to the reversal of paralysis due to spinal cord injury.



"We have created new materials that because of their chemical structure interact with cells of the central nervous system in ways that may help prevent the formation of the scar that is often linked to paralysis after spinal cord injury," said Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry and Medicine.

Similar to earlier experiments that promoted bone growth, the scientists now have successfully grown nerve cells using an artificial three-dimensional network of nanofibers, an important technique in regenerative medicine. The results will be published online Jan. 22 by the journal Science.


"We have shown that our scaffold selectively and rapidly directs cell differentiation, driving neural progenitor cells to become neurons and not astrocytes," said Stupp, who led the research team in Evanston. "Astrocytes are a major problem in spinal cord injury because they lead to scarring and act as a barrier to neuron repair."

The innovative scaffold is made up of nanofibers formed by peptide amphiphile molecules. The scientists’ key breakthrough was designing the peptide amphiphiles so that when they self-assembled into the scaffold a specific sequence of five amino acids known to promote neuron growth were presented in enormous density on the outer surfaces.

"This was all done by design," said Stupp, who is also director of the University’s Institute for Bioengineering and Nanoscience in Advanced Medicine. "By including a specific biological signal on the nanostructure we were able to customize the new materials for neurons."

In collaboration with the lab of John A. Kessler, Benjamin and Virginia T. Boshes Professor of Neurology at the Feinberg School of Medicine, Stupp and his team observed that when the peptide amphiphiles were placed in solution and combined with neural progenitor cells (which are present in the central nervous system and able to differentiate into different types of cells) the nanofiber scaffolds formed and led quickly to the selective differentiation of the cells into neurons.

In subsequent experiments, the researchers successfully delivered the peptide amphiphile solution, using a simple injection, to the site of a spinal cord injury in a laboratory rat. Upon contact with the tissue, the solution was transformed into a solid scaffold.

In addition to Stupp and Kessler, other authors on the Science paper are Gabriel A. Silva and Catherine Czeisler (lead authors), Krista L. Niece, Elia Beniash and Daniel Harrington, all from Northwestern University. The research was supported by the National Science Foundation, the National Institutes of Health and the U.S. Department of Energy.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Life Sciences:

nachricht Unravelling the genetics of fungal fratricide
16.10.2018 | Uppsala University

nachricht Fungal weapon turns against the maker
16.10.2018 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>