Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerves, heal thyselves

21.01.2004


Weizmann Institute scientists reveal key part of nerve regeneration mechanism



A new study conducted by Weizmann Institute scientists has now uncovered a key process leading to the regeneration of peripheral nerves. Nerves in the peripheral nervous system (any part of the body aside from the brain and spinal cord) are capable of regenerating, though often they do so poorly or slowly. Scientists have been trying to understand how they regenerate in order to better treat damage to the peripheral nervous system.
In addition, knowing how these neurons regenerate could provide insights into fixing neurons in the central nervous system where damage is irreversible.

Nerve cells are uniquely shaped, consisting of a cell body from which a long "arm," called an axon, extends. Axons can reach up to one meter in length and are the main conduit for nerve communication throughout our bodies, by conveying electric signals to muscles or other cells. Due to their great length, axons, like electrical or telecommunications lines, are vulnerable to damage. When a power line goes down in a storm, monitoring systems raise the alarm and repair crews are dispatched to the site. How does an axon ’raise the alarm’ after damage in our own bodies?



In a study published in Neuron, Dr. Michael Fainzilber and Ph.D. students Shlomit Hanz and Eran Pearlson of the Biological Chemistry Department have now shown that a special protein is produced at the site of damage in the axon. Called importin beta, it normally resides far away from the axon, near the nucleus of nerve cells. There, it facilitates the entry of molecules into the nucleus along with its "sister" molecule, importin alpha.

The scientists found that importin beta is produced in the axons upon injury. It then binds to importing alpha, which is normally present in axons, and to proteins that contain the "healing message" (which still have to be identified). The whole group fastens itself to an "engine" called dynein that chugs along "tracks" leading from the axon to the nucleus. The protein complex gains easy entrance to the nucleus due to the presence of importin alpha and beta. The researchers found that blocking this newly uncovered process inhibits nerve regeneration (photos available).

The identification of the proteins containing the "healing message" and of the genes that enable the healing response is the next step in unlocking the mystery of peripheral nerve regeneration.

Since the central and peripheral systems are connected to each other, the ability to transfer substances within the peripheral nervous system could one day offer a springboard from which to introduce therapeutic agents into the brain and spinal cord.

Dr. Michael Fainzilber’s research is supported by the Y. Leon Benoziyo Institute for Molecular Medicine, the Irwin Green Alzheimer’s Research Fund, the Koshland Research Fund, and the Buddy Taub Foundation. Dr. Fainzilber is the incumbent of the Daniel E. Koshland Sr. Career Development Chair.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>